首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An improved cellular automata model for heterogeneous work zone traffic   总被引:1,自引:0,他引:1  
This paper aims to develop an improved cellular automata (ICA) model for simulating heterogeneous traffic in work zone. The proposed ICA model includes the forwarding rules to update longitudinal speeds and positions of work zone vehicles. The randomization probability parameter used by the ICA is formulated as a function of the activity length, the transition length and the volumes of different types of vehicles traveling across work zone. Compared to the existing cellular automata models, the ICA model possesses a novel and realistic lateral speed and position updating rule so that the simulation of vehicle’s lateral movement in work zone is close to the reality. The ICA model is calibrated and validated microscopically and macroscopically by using the real work zone data. Comparisons of field data and ICA for trajectories, speed and speed–flow relationship in work zone show very close agreement. Finally, the proposed ICA model is applied to estimate traffic delay occurred in work zone.  相似文献   

2.
This paper develops inhomogeneous cellular automata models to elucidate the interacting movements of cars and motorcycles in mixed traffic contexts. The car and motorcycle are represented by non‐identical particle sizes that respectively occupy 6×2 and 2×1 cell units, each of which is 1.25×1.25 meters. Based on the field survey, we establish deterministic cellular automata (CA) rules to govern the particle movements in a two‐dimensional space. The instantaneous positions and speeds for all particles are updated in parallel per second accordingly. The deterministic CA models have been validated by another set of field observed data. To account for the deviations of particles' maximum speeds, we further modify the models with stochastic CA rules. The relationships between flow, cell occupancy (a proxy of density) and speed under different traffic mixtures and road (lane) widths are then elaborated.  相似文献   

3.
A high fidelity cell based traffic simulation model (CELLSIM) has been developed for simulation of high volume of traffic at the regional level. Straightforward algorithms and efficient use of computational resources make the model suitable for real time traffic simulation. The model formulation uses concepts of cellular automata (CA) and car-following (CF) models, but is more detailed than CA models and has realistic acceleration and deceleration models for vehicles. A simple dual-regime constant acceleration model has been used that requires minimal calculation compared to detailed acceleration models used in CF models. CELLSIM is simpler than most CF models; a simplified car-following logic has been developed using preferred time headway. Like CA models, integer values are used to make the model run faster. Space is discretized in small intervals and a new concept of percent space occupancy (SOC) is used to measure traffic congestion. CELLSIM performs well in congested and non-congested traffic conditions. It has been validated comprehensively at the macroscopic and microscopic levels using two sets of field data. Comparison of field data and CELLSIM for trajectories, average speed, density and volume show very close agreement. Statistical comparison of macroscopic parameters with other CF models indicates that CELLSIM performs as good as detailed CF models. Stability analyses conducted using mild and severe disturbances indicate that CELLSIM performs well under both conditions.  相似文献   

4.
Singapore’s Electronic Road Pricing (ERP) system involves time-variable charges which are intended to spread the morning traffic peak. The charges are revised every three months and thus induce regular motorists to re-think their travel decisions. ERP traffic data, captured by the system, provides a valuable source of information for studying motorists’ travel behaviour. This paper proposes a new modelling methodology for using these data to forecast short-term impacts of rate adjustment on peak period traffic volumes. Separate models are developed for different categories of vehicles which are segmented according to their demand elasticity with respect to road pricing. A method is proposed for estimating the maximum likelihood value of preferred arrival time (PAT) for each vehicle’s arrivals at a particular ERP gantry under different charging conditions. Iterative procedures are used in both model calibration and application. The proposed approach was tested using traffic datasets recorded in 2003 at a gantry located on Singapore’s Central Expressway (CTE). The model calibration and validation show satisfactory results.  相似文献   

5.
《Transportation Research》1978,12(5):337-342
An investigation has been carried out to determine any possible improvement to the overall performance of a traffic signal controlled intersection when a bus-actuated system is superimposed on fixed-time control. A hypothetical site downstream from a set of genuine signals was selected and data concerning flows, journey times and arrival patterns of vehicles were recorded. The Transyt program was used to obtain the appropriate offsets and splits at the hypothetical site for different levels of side road volume and these were fed into a simulation program together with the arrival times of vehicles to calculate the respective performance indices. The simulation program was then altered to represent a bus-actuated system where the signals would change at the detection of buses according to a predetermined policy but subject to overriding constraints imposed by the fixed-time settings. It was found that the bus-actuated system of control best suited a low flow of buses while fixed-time control gave a better performance index with a higher bus flow.  相似文献   

6.
7.
This paper presents a study on an adaptive traffic signal controller for real-time operation. The controller aims for three operational objectives: dynamic allocation of green time, automatic adjustment to control parameters, and fast revision of signal plans. The control algorithm is built on approximate dynamic programming (ADP). This approach substantially reduces computational burden by using an approximation to the value function of the dynamic programming and reinforcement learning to update the approximation. We investigate temporal-difference learning and perturbation learning as specific learning techniques for the ADP approach. We find in computer simulation that the ADP controllers achieve substantial reduction in vehicle delays in comparison with optimised fixed-time plans. Our results show that substantial benefits can be gained by increasing the frequency at which the signal plans are revised, which can be achieved conveniently using the ADP approach.  相似文献   

8.
Conceptually, an oversaturated traffic intersection is defined as one where traffic demand exceeds the capacity. Such a definition, however, cannot be applied directly to identify oversaturated intersections because measuring traffic demand under congested conditions is not an easy task, particularly with fixed-location sensors. In this paper, we circumvent this issue by quantifying the detrimental effects of oversaturation on signal operations, both temporally and spatially. The detrimental effect is characterized temporally by a residual queue at the end of a cycle, which will require a portion of green time in the next cycle; or spatially by a spill-over from downstream traffic whereby usable green time is reduced because of the downstream blockage. The oversaturation severity index (OSI), in either the temporal dimension (T-OSI) or the spatial dimension (S-OSI) can then be measured using high-resolution traffic signal data by calculating the ratio between the unusable green time due to detrimental effects and the total available green time in a cycle. To quantify the T-OSI, in this paper, we adopt a shockwave-based queue estimation algorithm to estimate the residual queue length. S-OSI can be identified by a phenomenon denoted as “Queue-Over-Detector (QOD)”, which is the condition when high occupancy on a detector is caused by downstream congestion. We believe that the persistence duration and the spatial extent with OSI greater than zero provide an important indicator for measuring traffic network performance so that corresponding congestion mitigation strategies can be prepared. The proposed algorithms for identifying oversaturated intersections and quantifying the oversaturation severity index have been field-tested using traffic signal data from a major arterial in the Twin Cities of Minnesota.  相似文献   

9.
This paper presents a simulation model to evaluate the quality of traffic flow. The evaluation is based on counts of the number of potential speed changes on a stretch of road and the estimated number of times a vehicle is limited in changing lanes. In order to describe the behaviour of the traffic flow process, two models were developed. One model describes vehicle arrival patterns on a road cross section; the other model, vehicle speeds. The stochastic process of speed is described as an autoregression process, whereas vehicle arrivals are presented as a Markovian process. Simulation results indicate an increase in traffic stream friction with an increase in vehicle-speed standard deviation and a reduction in average speed. The dependence of vehicle arrivals in adjacent lanes seems to increase the amount of friction in each lane. The simulation model developed enables a comparison of the quality of traffic flow at different sites, as well as a before-and-after study of any particular site.  相似文献   

10.
Existing roundabout simulation models fail to consider all types of driver behavior which compromises their accuracy and ability to accurately evaluate roundabout performance. Further, these non-compliant driver behaviors, including priority taking and priority abstaining, are inconsistent with existing traffic flow theories. In this paper, a new cellular automata model, C.A.Rsim, is developed and calibrated with field data from five single-lane roundabouts in four northeastern states. Model results indicate that approximately 20% of the individuals in the driver population are inclined to priority taking and approximately 20% are inclined to priority abstaining behavior, though the observed levels of these types of behavior are naturally lower and vary with traffic volume. The model results also corroborate other research indicating that current models can overestimate capacity at higher circulating volumes, possibly a result of the jamming effect produced by priority taking behavior. The reduction in priority abstaining behavior, which is observed at older roundabouts, significantly reduces delay and queue length in certain traffic volumes. C.A.Rsim is also more parsimonious than many existing microsimulation models. These results provide insight on how variations in conflicting flow (i.e., traffic volume and turning movement balance) impact the amount of observed non-compliant behavior.  相似文献   

11.
Increasing concerns on environment and natural resources, coupled with increasing demand for transport, put lots of pressure for improved efficiency and performance on transport systems worldwide. New technology nowadays enables fast innovation in transport, but it is the policy for deployment and operation with a systems perspective that often determines success. Smart traffic management has played important roles for continuous development of traffic systems especially in urban areas. There is, however, still lack of effort in current traffic management and planning practice prioritizing policy goals in environment and energy. This paper presents an application of a model-based framework to quantify environmental impacts and fuel efficiency of road traffic, and to evaluate optimal signal plans with respect not only to traffic mobility performance but also other important measures for sustainability. Microscopic traffic simulator is integrated with micro-scale emission model for estimation of emissions and fuel consumption at high resolution. A stochastic optimization engine is implemented to facilitate optimal signal planning for different policy goals, including delay, stop-and-goes, fuel economy etc. In order to enhance the validity of the modeling framework, both traffic and emission models are fine-tuned using data collected in a Chinese city. In addition, two microscopic traffic models are applied, and lead to consistent results for signal optimization. Two control schemes, fixed time and vehicle actuated, are optimized while multiple performance indexes are analyzed and compared for corresponding objectives. Solutions, representing compromise between different policies, are also obtained in the case study by optimizing an integrated performance index.  相似文献   

12.
《Transportation Research》1978,12(2):121-130
Some of the problems associated with the deterministic modelling of an urban traffic network are investigated. A link model is combined with a newly-proposed junction model to produce an overall network model. A qualitative assessment based on practical tests and on computer simulation experiments is given.  相似文献   

13.
The transportation demand is rapidly growing in metropolises, resulting in chronic traffic congestions in dense downtown areas. Adaptive traffic signal control as the principle part of intelligent transportation systems has a primary role to effectively reduce traffic congestion by making a real-time adaptation in response to the changing traffic network dynamics. Reinforcement learning (RL) is an effective approach in machine learning that has been applied for designing adaptive traffic signal controllers. One of the most efficient and robust type of RL algorithms are continuous state actor-critic algorithms that have the advantage of fast learning and the ability to generalize to new and unseen traffic conditions. These algorithms are utilized in this paper to design adaptive traffic signal controllers called actor-critic adaptive traffic signal controllers (A-CATs controllers).The contribution of the present work rests on the integration of three threads: (a) showing performance comparisons of both discrete and continuous A-CATs controllers in a traffic network with recurring congestion (24-h traffic demand) in the upper downtown core of Tehran city, (b) analyzing the effects of different traffic disruptions including opportunistic pedestrians crossing, parking lane, non-recurring congestion, and different levels of sensor noise on the performance of A-CATS controllers, and (c) comparing the performance of different function approximators (tile coding and radial basis function) on the learning of A-CATs controllers. To this end, first an agent-based traffic simulation of the study area is carried out. Then six different scenarios are conducted to find the best A-CATs controller that is robust enough against different traffic disruptions. We observe that the A-CATs controller based on radial basis function networks (RBF (5)) outperforms others. This controller is benchmarked against controllers of discrete state Q-learning, Bayesian Q-learning, fixed time and actuated controllers; and the results reveal that it consistently outperforms them.  相似文献   

14.
To connect microscopic driving behaviors with the macro-correspondence (i.e., the fundamental diagram), this study proposes a flexible traffic stream model, which is derived from a novel car-following model under steady-state conditions. Its four driving behavior-related parameters, i.e., reaction time, calmness parameter, speed- and spacing-related sensitivities, have an apparent effect in shaping the fundamental diagram. Its boundary conditions and homogenous case are also analyzed in detail and compared with other two models (i.e., Longitudinal Control Model and Intelligent Driver Model). Especially, these model formulations and properties under Lagrangian coordinates provide a new perspective to revisit the traffic flow and complement with those under Eulerian coordinate. One calibration methodology that incorporates the monkey algorithm with dynamic adaptation is employed to calibrate this model, based on real-field data from a wide range of locations. Results show that this model exhibits the well flexibility to fit these traffic data and performs better than other nine models. Finally, a concrete example of transportation application is designed, in which the impact of three critical parameters on vehicle trajectories and shock waves with three representations (i.e., respectively defined in x-t, n-t and x-n coordinates) is tested, and macro- and micro-solutions on shock waves well agree with each other. In summary, this traffic stream model with the advantages of flexibility and efficiency has the good potential in level of service analysis and transportation planning.  相似文献   

15.
In real traffic networks, travellers’ route choice is affected by traffic control strategies. In this research, we capture the interaction between travellers’ route choice and traffic signal control in a coherent framework. For travellers’ route choice, a VANET (Vehicular Ad hoc NETwork) is considered, where travellers have access to the real-time traffic information through V2V/V2I (Vehicle to Vehicle/Vehicle to Infrastructure) infrastructures and make route choice decisions at each intersection using hyper-path trees. We test our algorithm and control strategy by simulation in OmNet++ (A network communication simulator) and SUMO (Simulation of Urban MObility) under several scenarios. The simulation results show that with the proposed dynamic routing, the overall travel cost significantly decreases. It is also shown that the proposed adaptive signal control reduces the average delay effectively, as well as reduces the fluctuation of the average speed within the whole network.  相似文献   

16.
A novel traffic signal control formulation is developed through a mixed integer programming technique. The formulation considers dynamic traffic, uses dynamic traffic demand as input, and takes advantage of a convergent numerical approximation to the hydrodynamic model of traffic flow. As inherent from the underlying hydrodynamic model, this formulation covers the whole range of the fundamental relationships between speed, flow, and density. Kinematic waves of the stop-and-go traffic associated with traffic signals are also captured. Because of this property, one does not need to tune or switch the model for the different traffic conditions. It “automatically” adjusts to the different traffic conditions. We applied the model to three demand scenarios in a simple network. The results seemed promising. This model produced timing plans that are consistent with models that work for unsaturated conditions. In gridlock conditions, it produced a timing plan that was better than conventional queue management practices.  相似文献   

17.
Effects of queues on motorists during rush hours are severe at intersections controlled by roundabouts. Traffic police are frequently used in order to optimize the traffic flow and to control queue length at such intersections. However, the question as to how efficient such system is, compared with traffic signal, is not clear from the dynamic delay point of view. In this study a criterion is being developed based on vehicular delays as the motorist join the queues and cross the stop-line. The adopted method avoids oversimplification of reality and prevents unrealistic assumptions. The data required for the study were mainly collected through video filming technique. The results, for a given set of geometric and traffic characteristics, indicate that both a police-controlled roundabout and a traffic signal act in a similar manner in terms of vehicular delay at a certain critical value. This critical value is considered to be the point of intersection between the curves representing traffic signal and roundabout on a delay–space diagram for the vehicles as they join the tail end of the queue until they cross the stop-line. Beyond the critical value, the effect of delays and buildup of queues at roundabouts will be excessive, compared to traffic signals. Before the critical value the delays at traffic signals are quite high compared to roundabouts. The study will assist the concerned authorities to operate the existing conditions, particularly the roundabouts, more efficiently. It will also be beneficial for the traffic planners and policy makers in making judicious decisions regarding control type at intersections.  相似文献   

18.
《Transportation Research》1978,12(6):395-402
Estimation of traffic velocity and the number of vehicles on adjacent sections of a limited access highway is examined. The method evaluated is based upon application of Kalman Filtering Methods to a linear state variable model of traffic flow. The estimator utilizes velocity and flow measurements at selected points along the highway. The flow measurement is a nonlinear function of the state variables and necessitates linearization about the one step ahead prediction of the state (extended Kalman Filter) or about nominal values of the state variables. It is shown that performance using Lincoln Tunnel data is comparable in either case to that of methods previously reported and provides a substantial savings in storage requirements. Also demonstrated is the fact that flow at an internal measurement point may be deleted from the observation vector without a serious effect on performance. This would arise, for example, if control of traffic were to be exercised at such a point.  相似文献   

19.
This note gives simple equations for wave and shockwave velocities, using a graphical interpretation of speed-intercepts on the speed-concentration and speed-flow curves.  相似文献   

20.
Both coordinated-actuated signal control systems and signal priority control systems have been widely deployed for the last few decades. However, these two control systems are often conflicting with each due to different control objectives. This paper aims to address the conflicting issues between actuated-coordination and multi-modal priority control. Enabled by vehicle-to-infrastructure (v2i) communication in Connected Vehicle Systems, priority eligible vehicles, such as emergency vehicles, transit buses, commercial trucks, and pedestrians are able to send request for priority messages to a traffic signal controller when approaching a signalized intersection. It is likely that multiple vehicles and pedestrians will send requests such that there may be multiple active requests at the same time. A request-based mixed-integer linear program (MILP) is formulated that explicitly accommodate multiple priority requests from different modes of vehicles and pedestrians while simultaneously considering coordination and vehicle actuation. Signal coordination is achieved by integrating virtual coordination requests for priority in the formulation. A penalty is added to the objective function when the signal coordination is not fulfilled. This “soft” signal coordination allows the signal plan to adjust itself to serve multiple priority requests that may be from different modes. The priority-optimal signal timing is responsive to real-time actuations of non-priority demand by allowing phases to extend and gap out using traditional vehicle actuation logic. The proposed control method is compared with state-of-practice transit signal priority (TSP) both under the optimized signal timing plans using microscopic traffic simulation. The simulation experiments show that the proposed control model is able to reduce average bus delay, average pedestrian delay, and average passenger car delay, especially for highly congested condition with a high frequency of transit vehicle priority requests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号