首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

Validating microscopic traffic simulation models incorporates several challenges because of the inadequacy and rareness of validation data, and the complexity of the car following and lane-changing processes. In addition, validation data were usually measured in aggregate form at the link level and not at the level of the individual vehicle. The majority of model validation attempts in the literature use average link measurements of traffic characteristics. However, validation techniques based on averages of traffic variables have several limitations including possible inconsistency between the field observed and simulation-estimated variables, and as such the resulting spatial–temporal traffic stream patterns.

Due to these inconsistencies, this paper introduces a novel approach to the validation of microscopic traffic simulation models. A three-stage procedure for validating microscopic simulation models is presented. The paper describes the field measurements, experimental setup, and the simulation-based analysis of the three stages. The purpose of the first stage is to validate a benchmark simulator (NETSIM) using limited field data. The second stage examines the spatial–temporal traffic patterns extracted from the benchmark simulator versus those extracted from the simulation model to be validated (I-SIM-S). Different traffic patterns were examined accounting for various factors, such as traffic flow, link speeds, and signal timing. The third stage compares the aggregate traffic measures extracted from the subject simulator against those extracted from the benchmark simulator.  相似文献   

2.
Traffic operations for new road layouts are often simulated using microscopic traffic simulation packages. These traffic simulation packages usually simulate traffic on freeways by a combination of a car-following model and a lane change model. The car-following models have gained attention of researchers and are well calibrated versus data. The proposed lane change models are often representations of assumed reasonable behavior, not necessarily corresponding to reality. The current simulation packages apply solely one specific type of model for car-following or lane changing for all vehicles during the simulation. This paper investigates the decision process of lane changing maneuvers for a variety of drivers based on a two-stage test-drive. Participants are asked to take a drive on a freeway in the Netherlands in a camera-equipped vehicle. Afterwards, the drivers are asked to comment on their choices related to lane and speed choice, while watching the video. This paper reveals that different drivers have completely different strategies to choose lanes, and the choices to change lane are related to their speed choice. Four distinct strategies are empirically found. These strategies differ not only in parameter values, as is currently being modeled in most simulation packages, but also in their reasoning. Most remarkably, all drivers perceive their strategy as an obvious behavior and expect all other drivers to drive in a similar way. In addition to the interviews of the participants in the test-drive, 11 people who did not take part in the experiment were interviewed and questioned on lane change decisions. Moreover, the findings of this study have been presented to various groups of audience with different backgrounds (about 150 people). Their comments and feedback on the derived driving strategies have added some value to this study. The findings in this paper form a starting point for developing a novel lane change model which considers four different driving strategies among the drivers on freeway. This is a significant contribution in the area of driving behavior modeling, since the existing microscopic simulators consider only one type of lane change models for all drivers during the simulation. This could lead to significant changes in the way lane changes on freeways are modeled.  相似文献   

3.
Traffic characteristics and operations at the signalised intersections of developing cities are significantly different from those at the similar intersections of cities in developed countries. Considering this, a new microscopic simulation technique, where a co-ordinate approach to modelling vehicle location is adopted, has been used for modelling the traffic operations at signalised intersections of developing cities. The model has been calibrated and validated on the basis of data collected from Dhaka, the capital of Bangladesh. It has been found that the concept of passenger car unit (PCU), which is widely used as a signal design parameter, is not applicable in case of mixed traffic comprising of both motorised and non-motorised vehicles. Therefore, using the developed simulation model the saturation flows at signalised intersections are investigated in an aggregate form of vehicles per hour. It has also been found that saturation flows in terms of aggregate vehicles are very much dependent on the approach width, turning proportion and composition of the traffic mix. Using the simulation results, an equation has also been regressed in order to be able to estimate the saturation flow from the influencing variables like road width, turning proportion, percentage of heavy and non-motorised vehicles.  相似文献   

4.
Simulating driving behavior in high accuracy allows short-term prediction of traffic parameters, such as speeds and travel times, which are basic components of Advanced Traveler Information Systems (ATIS). Models with static parameters are often unable to respond to varying traffic conditions and simulate effectively the corresponding driving behavior. It has therefore been widely accepted that the model parameters vary in multiple dimensions, including across individual drivers, but also spatially across the network and temporally. While typically on-line, predictive models are macroscopic or mesoscopic, due to computational and data considerations, nowadays microscopic models are becoming increasingly practical for dynamic applications. In this research, we develop a methodology for online calibration of microscopic traffic simulation models for dynamic multi-step prediction of traffic measures, and apply it to car-following models, one of the key models in microscopic traffic simulation models. The methodology is illustrated using real trajectory data available from an experiment conducted in Naples, using a well-established car-following model. The performance of the application with the dynamic model parameters consistently outperforms the corresponding static calibrated model in all cases, and leads to less than 10% error in speed prediction even for ten steps into the future, in all considered data-sets.  相似文献   

5.
In this paper a traffic signal control system based on real-time simulation, multi-agent control scheme, and fuzzy inference is presented. This system called HUTSIG is closely related to the microscopic traffic simulator HUTSIM, both have been developed by the Helsinki University of Technology. The HUTSIM simulation model is used both for off-line evaluation of the signal control scheme and for on-line modeling of traffic situations during actual control. Indicators are derived from the simulation model as input to the control scheme. In the presented control technique, each signal operates individually as an agent, negotiating with other signals about the control strategy. Here the decision making of the agents is based on fuzzy inference that allows a combination of various aspects like fluency, economy, environment and safety. The fuzzy implementation of the HUTSIG signal control system is developed under the FUSICO-project at Helsinki University of Technology.  相似文献   

6.
This study addresses the impacts of automated cars on traffic flow at signalized intersections. We develop and subsequently employ a deterministic simulation model of the kinematics of automated cars at a signalized intersection approach, when proceeding forward from a stationary queue at the beginning of a signal phase. In the discrete-time simulation, each vehicle pursues an operational strategy that is consistent with the ‘Assured Clear Distance Ahead’ criterion: each vehicle limits its speed and spacing from the vehicle ahead of it by its objective of not striking it, regardless of whether or not the future behavior of the vehicle ahead is cooperative. The simulation incorporates a set of assumptions regarding the values of operational parameters that will govern automated cars’ kinematics in the immediate future, which are sourced from the relevant literature.We report several findings of note. First, under a set of assumed ‘central’ (i.e. most plausible) parameter values, the time requirement to process a standing queue of ten vehicles is decreased by 25% relative to human driven vehicles. Second, it was found that the standard queue discharge model for human–driven cars does not directly transfer to queue discharge of automated vehicles. Third, a wet roadway surface may result in an increase in capacity at signalized intersections. Fourth, a specific form of vehicle-to-vehicle (V2V) communications that allows all automated vehicles in the stationary queue to begin moving simultaneously at the beginning of a signal phase provides relatively minor increases in capacity in this analysis. Fifth, in recognition of uncertainty regarding the value of each operational parameter, we identify (via scenario analysis, calculation of arc elasticities, and Monte-Carlo methods) the relative sensitivity of overall traffic flow efficiency to the value of each operational parameter.This study comprises an incremental step towards the broader objective of adapting standard techniques for analyzing traffic operations to account for the capabilities of automated vehicles.  相似文献   

7.
This paper summarizes a standardized verification process for network traffic simulation models. After the general introduction of philosophy of verification, we explain detailed processes of the verification and its application to several well‐known simulation models. “Verification” here means several examination tests of simulation models using virtual data on a simple network so as to confirm their fundamental functions. In the course of model development, the developers have to examine whether the model performance is consistent with the specifications that they intend and also with the well‐authorized traffic engineering theory. Because of several constraints in putting the model specifications into the computer programming such as discretizing of time and space and simplifying vehicle behaviors to some degree, the intended model specifications may not be fully achieved in a computer. Therefore, we strongly recommend the verification before applying the models to a real network.  相似文献   

8.
This paper presents an integrated framework for effective coupling of a signal timing estimation model and dynamic traffic assignment (DTA) in feedback loops. There are many challenges in effectively integrating signal timing tools with DTA software systems, such as data availability, exchange format, and system coupling. In this research, a tight coupling between a DTA model with various queue‐based simulation models and a quick estimation method Excel‐based signal control tool is achieved and tested. The presented framework design offers an automated solution for providing realistic signal timing parameters and intersection movement capacity allocation, especially for future year scenarios. The framework was used to design an open‐source data hub for multi‐resolution modeling in analysis, modeling and simulation applications, in which a typical regional planning model can be quickly converted to microscopic traffic simulation and signal optimization models. The coupling design and feedback loops are first demonstrated on a simple network, and we examine the theoretically important questions on the number of iterations required for reaching stable solutions in feedback loops. As shown in our experiment, the current coupled application becomes stable after about 30 iterations, when the capacity and signal timing parameters can quickly converge, while DTA's route switching model predominately determines and typically requires more iterations to reach a stable condition. A real‐world work zone case study illustrates how this application can be used to assess impacts of road construction or traffic incident events that disrupt normal traffic operations and cause route switching on multiple analysis levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
A high fidelity cell based traffic simulation model (CELLSIM) has been developed for simulation of high volume of traffic at the regional level. Straightforward algorithms and efficient use of computational resources make the model suitable for real time traffic simulation. The model formulation uses concepts of cellular automata (CA) and car-following (CF) models, but is more detailed than CA models and has realistic acceleration and deceleration models for vehicles. A simple dual-regime constant acceleration model has been used that requires minimal calculation compared to detailed acceleration models used in CF models. CELLSIM is simpler than most CF models; a simplified car-following logic has been developed using preferred time headway. Like CA models, integer values are used to make the model run faster. Space is discretized in small intervals and a new concept of percent space occupancy (SOC) is used to measure traffic congestion. CELLSIM performs well in congested and non-congested traffic conditions. It has been validated comprehensively at the macroscopic and microscopic levels using two sets of field data. Comparison of field data and CELLSIM for trajectories, average speed, density and volume show very close agreement. Statistical comparison of macroscopic parameters with other CF models indicates that CELLSIM performs as good as detailed CF models. Stability analyses conducted using mild and severe disturbances indicate that CELLSIM performs well under both conditions.  相似文献   

10.
Car-following models are always of great interest of traffic engineers and researchers. In the age of mass data, this paper proposes a nonparametric car-following model driven by field data. Different from most of the existing car-following models, neither driver’s behaviour parameters nor fundamental diagrams are assumed in the data-driven model. The model is proposed based on the simple k-nearest neighbour, which outputs the average of the most similar cases, i.e., the most likely driving behaviour under the current circumstance. The inputs and outputs are selected, and the determination of the only parameter k is introduced. Three simulation scenarios are conducted to test the model. The first scenario is to simulate platoons following real leaders, where traffic waves with constant speed and the detailed trajectories are observed to be consistent with the empirical data. Driver’s rubbernecking behaviour and driving errors are simulated in the second and third scenarios, respectively. The time–space diagrams of the simulated trajectories are presented and explicitly analysed. It is demonstrated that the model is able to well replicate periodic traffic oscillations from the precursor stage to the decay stage. Without making any assumption, the fundamental diagrams for the simulated scenario coincide with the empirical fundamental diagrams. These all validate that the model can well reproduce the traffic characteristics contained by the field data. The nonparametric car-following model exhibits traffic dynamics in a simple and parsimonious manner.  相似文献   

11.
Real‐time signal control operates as a function of the vehicular arrival and discharge process to satisfy a pre‐specified operational performance. This process is often predicted based on loop detectors placed upstream of the signal. In our newly developed signal control for diamond interchanges, a microscopic model is proposed to estimate traffic flows at the stop‐line. The model considers the traffic dynamics of vehicular detection, arrivals, and departures, by taking into account varying speeds, length of queues, and signal control. As the signal control is optimized over a rolling horizon that is divided into intervals, the vehicular detection for and projection into the corresponding horizon intervals are also modeled. The signal control algorithm is based on dynamic programming and the optimization of signal policy is performed using a certain performance measure involving delays, queue lengths, and queue storage ratios. The arrival–discharge model is embedded in the optimization algorithm and both are programmed into AIMSUN, a microscopic stochastic simulation program. AIMSUN is then used to simulate the traffic flow and implement the optimal signal control by accessing internal data including detected traffic demand and vehicle speeds. Sensitivity analysis is conducted to study the effect of selecting different optimization criteria on the signal control performance. It is concluded that the queue length and queue storage ratio are the most appropriate performance measures in real‐time signal control of interchanges. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
ABSTRACT

This paper presents an overview of the recent developments in traffic flow modelling and analysis using macroscopic fundamental diagram (MFD) as well as their applications. In recent literature, various aggregated traffic models have been proposed and studied to analyse traffic flow while enhancing network efficiency. Many of these studies have focused on models based on MFD that describes the relationship between aggregated flow and aggregated density of transport networks. The analysis of MFD has been carried out based on experimental data collected from sensors and GPS, as well as simulation models. Several factors are found to influence the existence and shape of MFD, including traffic demand, network and signal settings, and route choices. As MFD can well express the traffic dynamics of large urban transport networks, it has been extensively applied to traffic studies, including the development of network-wide control strategies, network partitioning, performance evaluation, and road pricing. This work also presents future extensions and research directions for MFD-based traffic modelling and applications.  相似文献   

13.
In real traffic networks, travellers’ route choice is affected by traffic control strategies. In this research, we capture the interaction between travellers’ route choice and traffic signal control in a coherent framework. For travellers’ route choice, a VANET (Vehicular Ad hoc NETwork) is considered, where travellers have access to the real-time traffic information through V2V/V2I (Vehicle to Vehicle/Vehicle to Infrastructure) infrastructures and make route choice decisions at each intersection using hyper-path trees. We test our algorithm and control strategy by simulation in OmNet++ (A network communication simulator) and SUMO (Simulation of Urban MObility) under several scenarios. The simulation results show that with the proposed dynamic routing, the overall travel cost significantly decreases. It is also shown that the proposed adaptive signal control reduces the average delay effectively, as well as reduces the fluctuation of the average speed within the whole network.  相似文献   

14.
The UK Transport Research Laboratory has long had a Worldwide reputation for contributions to the field of traffic signal control, especially as originators of the TRANSYT and SCOOT signal coordination methods. This article describes some less widely known work. Accident risk at urban junctions and on road links between them is related to a wide variety of factors including: traffic and pedestrian flows, signal control parameters, geometry, and other layout features. Comprehensive studies have derived, and are continuing to derive, quantitative risk relationships for use in off-line software. Those for individual signalized cross-roads have already been incorporated in the TRL's program OSCADY to assist junction design. Now, an area-wide safety model incorporating the CONTRAM traffic assignment program is being actively developed to provide a tool for evaluation of network traffic management schemes. For on-line signal control at individual junctions, the MOVA system has been developed to provide a delay-minimizing or capacity-maximizing control logic as appropriate. ‘Before and after’ comparisons with the UK's previous fully vehicle-actuated signal system are presented, including both delay and safety aspects.  相似文献   

15.
Dynamic traffic simulation models are frequently used to support decisions when planning an evacuation. This contribution reviews the different (mathematical) model formulations underlying these traffic simulation models used in evacuation studies and the behavioural assumptions that are made. The appropriateness of these behavioural assumptions is elaborated on in light of the current consensus on evacuation travel behaviour, based on the view from the social sciences as well as empirical studies on evacuation behaviour. The focus lies on how travellers’ decisions are predicted through simulation regarding the choice to evacuate, departure time choice, destination choice, and route choice. For the evacuation participation and departure time choice we argue in favour of the simultaneous approach to dynamic evacuation demand prediction using the repeated binary logit model. For the destination choice we show how further research is needed to generalize the current preliminary findings on the location-type specific destination choice models. For the evacuation route choice we argue in favour of hybrid route choice models that enable both following instructed routes and en-route switches. Within each of these discussions, we point at current limitations and make corresponding suggestions on promising future research directions.  相似文献   

16.
Traffic evacuation is a critical task in disaster management. Planning its evacuation in advance requires taking many factors into consideration such as the destination shelter locations and numbers, the number of vehicles to clear, the traffic congestions as well as traffic road configurations. A traffic evacuation simulation tool can provide the emergency managers with the flexibility of exploring various scenarios for identifying more accurate model to plan their evacuation. This paper presents a traffic evacuation simulation system based on integrated multi-level driving-decision models which generate agents’ behavior in a unified framework. In this framework, each agent undergoes a Strategic, Cognitive, Tactical and Operational (SCTO) decision process, in order to make a driving decision. An agent’s actions are determined by a combination, on each process level, of various existing behavior models widely used in different driving simulation models. A wide spectrum of variability in each agent’s decision and driving behaviors, such as in pre-evacuation activities, in choice of route, and in the following or overtaking the car ahead, are represented in the SCTO decision process models to simulate various scenarios. We present the formal model for the agent and the multi-level decision models. A prototype simulation system that reflects the multi-level driving-decision process modeling is developed and implemented. Our SCTO framework is validated by comparing with MATSim tool, and the experimental results of evacuation simulation models are compared with the existing evacuation plan for densely populated Beijing, China in terms of various performance metrics. Our simulation system shows promising results to support emergency managers in designing and evaluating more realistic traffic evacuation plans with multi-level agent’s decision models that reflect different levels of individual variability of handling stress situations. The flexible combination of existing behavior and decision models can help generating the best evacuation plan to manage each crisis with unique characteristics, rather than resorting to a fixed evacuation plan.  相似文献   

17.
This study proposes a microscopic pedestrian simulation model for evaluating pedestrian flow. Recently, several pedestrian models have been proposed to evaluate pedestrian flow in crowded situations for the purpose of designing facilities. However, current pedestrian simulation models do not explain the negotiation process of collision avoidance between pedestrians, which can be important for representing pedestrian behaviour in congested situations. This study builds a microscopic model of pedestrian behaviour using a two-player game and assuming that pedestrians anticipate movements of other pedestrians so as to avoid colliding with them. A macroscopic tactical model is also proposed to determine a macroscopic path to a given destination. The results of the simulation model are compared with experimental data and observed data in a railway station. Several characteristics of pedestrian flows such as traffic volume and travel time in multidirectional flows, temporal–spatial collision avoidance behaviour and density distribution in the railway station are reproduced in the simulation.  相似文献   

18.
Acceleration is an important driving manoeuvre that has been modelled for decades as a critical element of the microscopic traffic simulation tools. The state-of-the art acceleration models have however primarily focused on lane based traffic. In lane based traffic, every driver has a single distinct lead vehicle in the front and the acceleration of the driver is typically modelled as a function of the relative speed, position and/or type of the corresponding leader. On the contrary, in a traffic stream with weak lane discipline, the subject driver may have multiple vehicles in the front. The subject driver is therefore subjected to multiple sources of stimulus for acceleration and reacts to the stimulus from the governing leader. However, only the applied accelerations are observed in the trajectory data, and the governing leader is unobserved or latent. The state-of-the-art models therefore cannot be directly applied to traffic streams with weak lane discipline.This prompts the current research where we present a latent leader acceleration model. The model has two components: a random utility based dynamic class membership model (latent leader component) and a class-specific acceleration model (acceleration component). The parameters of the model have been calibrated using detailed trajectory data collected from Dhaka, Bangladesh. Results indicate that the probability of a given front vehicle of being the governing leader can depend on the type of the lead vehicle and the extent of lateral overlap with the subject driver. The estimation results are compared against a simpler acceleration model (where the leader is determined deterministically) and a significant improvement in the goodness-of-fit is observed. The proposed models, when implemented in microscopic traffic simulation tools, are expected to result more realistic representation of traffic streams with weak lane discipline.  相似文献   

19.
Driving behavior models that capture drivers’ tactical maneuvering decisions in different traffic conditions are essential to microscopic traffic simulation systems. This paper focuses on a parameter that has a great impact on road users’ aggressive overtaking maneuvers and directly affects lane-changing models (an integral part of microscopic traffic simulation models), namely, speed deviation. The objective of this research is to investigate the impacts of speed deviation in terms of performance measures (delay time, network mean speed, and travel time duration) and the number of lane-change maneuvers using the Aimsun traffic simulator. Following calibration of the model for a section of urban highway in Tehran, this paper explores the sensitivity of lane-changing maneuvers during different speed deviations by conducting two types of test. Simulation results show that, by decreasing speed deviation, the number of lane changes reduces remarkably and so network safety increases, thus reducing travel time due to an increase in network mean speed.  相似文献   

20.
This Taiwan traffic‐adaptive arterial signal control model borrowed its traffic flow framework mainly from a British traffic‐adaptive control model with a cyclic traffic progression function, i.e. SCOOT (Split Cycle Office Optimisation Technique). The new arterial control model can take into account delays of both major and minor streets and make real‐time signal timing decisions with optimal two‐way signal offsets, so as to create the best arterial signal operation performance. It has been developed to be an online real‐time software for both simulation testing and field validation. Through simulation, it was found that the performance when operating this newly developed real‐time arterial traffic‐adaptive model was significantly better than when using the optimal fixed‐time arterial timing plan. On the aspect of field testing, three signalized intersections located in East District, Tainan City, Taiwan were selected to be the test sites. Fairly good traffic control performance has been demonstrated in that it can effectively reduce travel delays of the control arterial as a whole. Additional discussions about how to combine travel delay and the total number of vehicle stops into a new control performance index have also been included to make the new traffic‐adaptive model more flexible and reasonable to meet the expectations of different driver groups in the arterial system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号