首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
为解决铁路轨旁信号灯的定位与实时检测问题,在深入分析传统SSD算法与MobileNet模型的基础上,将MobileNet模型的最后平均池化层、全连接层转换为SSD算法的多尺度特征映射层,提出了一种基于MobileNet-SSD的铁路信号灯检测算法.实验结果表明:该算法克服了传统SSD算法对小目标识别不准确、检测实时性较差的问题,检测速度更快,准确率更高;在50 m监控范围内,算法的平均检测准确率达到85%以上,同时具有25帧/s的实时识别能力.  相似文献   

2.
针对复杂铁路环境下动态入侵异物检测精度低和抗扰能力差等问题,提出一种基于改进MOG-LRMF算法的铁路轨道异物入侵实时检测方法. 引入仿射变换,对视频序列可能出现的抖动进行预校正处理;分析MOG-LRMF模型特点,利用MOG模型对视频帧中的背景进行建模,用前一帧背景中学习到的知识对当前帧背景进行预测,优化MOG-LRMF参数求解模型;利用EM算法对改进MOG-LRMF模型进行参数求解,实现背景在线实时更新. 实验结果表明,改进的MOG-LRMF算法在光照充足、光线较弱、相机存在抖动、背景复杂及存在多个目标情形下都能提高目标检测精度,具有较好的抗干扰性、鲁棒性和快速性.  相似文献   

3.
针对道路车辆实时检测遮挡严重与小目标车辆漏检率高的问题,提出了基于改进YOLO v3模型和Deep-SORT算法的车辆检测方法;为提高模型对道路车辆的检测能力,采用K-means++聚类算法对目标候选框进行聚类分析,选择合适的Anchor box数量,并在网络浅层增加了特征提取层,可提取到更精细的车辆特征;为加强网络对远近不同目标的鲁棒性,在保留原YOLO v3模型输出层的同时,增加了一层输出层,将52像素×52像素输出特征图经过上采样后得到104像素×104像素特征图,并将其与浅层同尺寸特征图进行拼接,实现车辆目标的检测;为了降低目标遮挡对检测效果的影响,提高对视频上下帧之间关联信息的关注度,将改进YOLO v3模型和Deep-SORT算法相结合,以此来弥补两者之间的不足。试验结果表明:改进YOLO v3模型有效地提高了车辆检测的性能,与在网络浅层增加特征提取层的模型相比,平均精度提高了1.4%,与增加一层输出层的模型相比,平均精确度提高了0.8%,说明改进YOLO v3模型提取的特征表达能力更强,增强了网络对小目标的检测能力;改进YOLO v3模型在引入Deep-SORT算法后,查准率和召回率分别达到90.16%和91.34%,相比改进YOLO v3模型,查准率和召回率分别提高了1.48%和4.20%,同时保证了检测速度,对于不同大小目标的检测具有良好的鲁棒性。   相似文献   

4.
针对目前动车组运行故障图像检测中人工分析方式误报警数量多、实际故障检出率低等问题,提出一种基于YOLO算法的动车组裙板故障检测方法。首先通过k-means聚类算法对检测目标进行聚类分析,其次选择合适的YOLO算法模型并分析网络结构,最后使用人工标注的多组尺度特征的裙板故障缺陷位置和类别数据集训练网络。在取自多条线路的动车组裙板故障图像数据制作成的测试集上,对YOLO模型进行试验。结果表明,模型能够快速、准确地识别故障,为高速铁路运行安全提供保障。  相似文献   

5.
轨道交通线路净空安全是确保列车平稳、不间断运行的基础.由于轨间异物对行车安全产生严重影响,所以基于非轨道电路的轨道异物入侵检测系统在铁路系统中具有十分广泛的应用前景.本文提出了一种基于移动车载摄像机检测轨间异物的方法.首先,通过钢轨识别算法自动定位钢轨位置,并确定列车前方轨道是否有其它列车或公路车辆等大型异物,若有则进行报警;之后,基于边缘检测的异物检测算法自动检测轨间可疑小异物,同时提取可疑异物的尺度信息和颜色索引参数等相关特征;最后,用支持向量机(SVM)来对可疑小异物区域进行分类和辨识.车载实验结果表明,该方法可以有效地检测出轨间异物.  相似文献   

6.
针对铁路轨道异物入侵的识别精度,提出了一种基于双背景建模和差分图像的识别方法.基于多帧平均背景和当前帧的前一帧背景建立模型,采用背景逐帧更新,使用平均背景差分和帧间差分的异物检测方法,界定基于边缘提取的铁轨危险区域,再通过黑白像素方法对轨道异物进行识别.实验表明,该方法具有较好的抑噪性和环境适应性,可有效提高异物识别精度.  相似文献   

7.
为处理地铁侵限问题,采用实际掘进中线坐标估计优化线路参数,以地铁实际掘进中线为基础,整体上对线路参数进行优化,以满足设计约束及侵限要求,可最大限度地提升对复杂侵限情况处理的能力.阐述了调整设计中线以控制边侧侵限的原理,给出了地铁调线优化模型,包括目标函数及约束条件.采用正交最小二乘法,按侵限阈值进行线形拟合分段,形成直线和圆曲线分段线元集合,并提出优化算法对直线、圆曲线分段线元进行优化组合,形成初始优化线路,再对初始优化线路的分段点进行迭代优化,获得与实测中心线贴合度最佳且满足规范和侵限要求的地铁设计中线.最后,对该算法的正确性和有效性进行了实例验证.研究结果表明:该优化算法不仅可以进行地铁优化调线,而且可以有效估计既有线路参数.   相似文献   

8.
现代铁路系统中,智能视频分析技术已被广泛应用于异物入侵监测,前景目标检测是入侵判断的必要过程. 背景差分常用于检测前景目标,但铁路场景复杂,存在动态变化的背景区域和未知类型的目标,现有基于阈值分割或深度学习的背景差分算法都不能满足需求,故提出一种基于阈值自适应调节的前景目标检测算法. 利用像素值在时间上的动态信息,分割结果的反馈信息和由超像素提供的空间信息确定阈值调节因子,动态调节阈值以适应环境变化;提出一种灵活可靠的背景模型初始化方法,消除鬼影问题,实现一帧到多帧初始化的灵活切换. 实验结果表明,所提算法在铁路场景上取得了较好的准确率和误分类率,且平衡了精度和速度.  相似文献   

9.
以大断面铁路隧道在顺层偏压、软弱围岩地质情况下初支沉降变形收敛侵限处理为例,详细介绍软岩偏压地质下隧道施工过程中初支变形侵限分段分单元方式扩挖置换拱的施工方法及要点,安全有效处理保证二衬净空。  相似文献   

10.
针对道路车辆目标检测传统方法需随场景变化提取不同特征, 检测率较低与鲁棒性差的问题, 提出了一种基于Darknet框架下YOLO v2算法的车辆多目标检测方法; 根据目标路段场景与车流量的变化对YOLO-voc网络模型进行改进, 基于ImageNet数据集和微调技术获得分类训练网络模型, 对训练结果和车辆目标特征进行分析后进一步调整改进的算法参数, 最终获得更适合于道路车辆检测的YOLO-vocRV网络模型下车辆多目标检测方法; 为验证检测方法的有效性和完备性, 采用不同车流密度进行了车辆多目标检测试验, 并与经典YOLO-voc、YOLO9000模型进行了对比; 采用改进YOLO-vocRV网络模型, 选取20 000次迭代, 分析了多目标检测结果。试验结果表明: 在阻塞流样本条件下, YOLO9000网络模型检测率为93.71%, YOLO-voc网络模型检测率为94.48%, 改进YOLO-vocRV网络模型检测率达到了96.95%, 因此, 改进网络模型YOLOvocRV检测率较高; YOLO-vocRV模型精确度和召回率均聚集在0.95, 因此, 在获得较好精确度的条件下损失的召回率明显较小, 达到了很好的折中; 采用混合样本训练后, 基于YOLO-vocRV模型的车辆多目标检测方法的检测率在自由流状态下可达99.11%, 同步流状态下可达97.62%, 阻塞流状态下可达到97.14%, 具有较小的误检率和良好的鲁棒性。   相似文献   

11.
为解决在车道线识别中检测消失点误差较大和检测速率较慢的不足,提出一种基于CHT消失点检测对车道线采纳点进行最小二乘拟合的车道线检测算法。该算法首先计算RGB熵直方图的最小差值,根据该差值初步分割道路图像。然后引入平行坐标系参数化的级联霍夫变换方法,对查找消失点方法进行改进通过一次投票得出消失点。并以搜寻的消失点为约束条件,利用最小二乘法对最终点进行拟合从而完成对车道线的检测。实验结果表明,所提出的算法对离线图片车道线检测精度达到93.4%,识别速度也有大幅度提升。  相似文献   

12.
针对固定检测器在采集动态交通数据过程中易发生交通数据异常、数据缺失等问题,为实现故障数据有效识别及修复,提出了基于离群距离检测的故障数据识别算法及改进的DE-LSTM数据修复模型。利用时序数据的自身连续性,采用直接离群点定位和离群距离检测对故障数据进行有效识别。采用差分进化算法优化长短期记忆神经网络的隐含层神经元个数和初始学习率,并引入自适应控制策略改进传统DE算法中的变异因子、交叉因子,建立了基于改进差分进化算法优化长短期记忆神经网络的修复模型,并与固定阈值结合交通流机理、LSTM神经网络模型及DE-LSTM修复模型进行对比。实例验证结果表明:与固定阈值结合交通流机理法相比,离群距离检测算法识别率更为高效,改进的DE-LSTM模型具有良好的计算效率及修复性能。  相似文献   

13.
针对ViBe算法在检测铁路轨道动态入侵异物时鬼影消除较慢导致其监测实时性不足和预警精度不高的缺陷,利用背景重构与像素块替换方法对不同时期的鬼影进行快速抑制.首先利用视频序列多帧图像重构背景的方法抑制初始鬼影;其次通过比较物体外接矩形坐标变化和其包含像素数量对鬼影和运动物体进行区分,再利用当前鬼影像素块替换背景图像相同位置像素块来减少消除中间鬼影的帧数;最后利用前景与背景像素点比例法和形态学方法对动态异物入侵进行精确识别.实验表明,所提方法可以有效减少抑制鬼影所需要的帧数,提升动态入侵异物监测实时性,同时异物检测精度也有较大提升.  相似文献   

14.
针对TFDS异物检测种类多、识别难的问题,提出了一种基于Token的列车异物检测优化方法,该方法将Token表示与异物检测相融合,探索一种有效的异物类别特征表示方法和异物检测模型,能够实时采集的货车车辆部件图像,实现对货车各部位不同种类异物的动态实时监测。通过多组交叉对比试验验证了该方法的有效性,研究对于强化货车安全保障有重要意义。  相似文献   

15.
高速路口车道上对危险化学品车辆进行识别,对实时监测危险化学品车辆、保证事故后的及时救援有重大意义.根据危化车辆车顶必须安装危险标志灯的特征,针对监控设备抓拍的车辆头部图片,采用边缘检测、连通边缘提取、相似三角形检测等一系列算法,检测图像中是否存在标志灯,从而实现对危化车辆的识别.最后采用Matlab实现了识别算法,验证了本方法的准确性和可行性.  相似文献   

16.
基于雷达图谱与深度神经网络的沥青路面结构损伤自动辨识方法存在数据量少且种类不均衡的问题,识别准确性与稳定性仍有待提高。提出基于非均质雷达图谱的路面结构损伤识别技术。采用探地雷达采集沥青路面结构裂缝与层间不连续病害,获取实测剖面图;基于时域有限差分法,模拟裂缝与层间不连续在匀质模型中的回波特征,与实测图谱组成数据集1#;基于芯样CT扫描图构建“沥青-集料”二相介质模型,模拟裂缝与层间不连续在二相介质模型中的回波特征,与实测图谱组成数据集2#;采用数据集1#和2#,分别训练YOLO v5深度神经网络。研究结果表明:数据集1#和2#在YOLO v5模型测试集上的mAP@0.5为93.79%与96.33%,证明非均质图谱特征可丰富网络训练样本,并提高深度学习模型识别的准确性。  相似文献   

17.
针对室内场所,运用目标检测等算法实现对监控视频的实时异常检测.为提高检测效果,对YOLO v2模型进行了三个方面的改进:利用稠密网络中特征融合方式改进网络结构;使用K-means++对目标框进行聚类改进网络参数;利用迁移学习的方式对网络进行训练;改进最终得到Dense_YOLO目标检测模型.实验结果表明Dense_YOLO正确率达到了93.66%,相比YOLO v2提高了7.06%.针对人、宠物、贵重物品这几种常见的监控目标,利用Dense_YOLO对目标状态进行异常检测,并分别在一般场景、光照强、光照弱、目标被遮挡、目标较小等不利条件下进行测试,区域入侵检测、物品移动/移出检测两种特定目标异常检测功能分别到达92.73%、90.07%的平均正确率.  相似文献   

18.
准确辨识交叉口交通状态是实施有效交通控制策略的前提. 传统交通状态识别方法是利用占有率、排队等统计数据设计指标实现状态识别,存在只能从单一角度刻画交叉口交通需求的问题. 对此,提出基于半监督哈希算法的交叉口交通状态识别方法. 从原始数据丰富特征入手,构建交叉口有效检测区域的图像化模型;将交叉口交通状态识别转化为图像搜索问题,利用监督哈希算法实现基于部分标签信息的图像搜索,进而得到交叉口的交通状态;最后,利用仿真对该方法进行了验证. 结果表明,所提方法在识别精度和速度上具有可行性和有效性.  相似文献   

19.
从路面缺陷检测系统组成和特点出发,首先简要回顾了路面缺陷检测系统与传统路面图像处理方法的发展过程。在此基础上,探讨了国内外典型路面缺陷检测系统的现状,包含重型道路状况智能检测系统、轻量化路面质量检测系统,并对检测系统的性能及部分参数进行了描述。然后,详细介绍了基于机器学习、深度学习理论的路面缺陷智能化检测方法的演变历程,重点分析了基于深度学习技术的路面缺陷智能化检测方法国内外的研究进展,主要包含基于区域卷积神经网络、单次多框检测器、YOLO目标检测、Transformer检测模型等路面缺陷智能检测方法。最后,从多模信息融合、双轻量化设备、稳健智能化算法等方面对路面缺陷智能化检测系统的发展趋势和应用前景进行了展望。  相似文献   

20.
铁路应急救援决策是铁路运输安全管理领域研究的热点之一.本文以铁路应急救援为背景,分析多智能体技术在铁路应急决策领域应用的可行性,提出一种基于分层Agent的铁路应急救援指挥控制结构,并分析了各层Agent的基本功能.根据各层Agent的结构特点设计决策推理的模型,采用基于模糊评价的方法实现管理Agent的决策机制,并阐述了决策算法的计算过程.最后通过一个具体的列车救援决策案例进行模型的验证.研究结果表明,将该方法应用在铁路应急救援决策领域具有可行性.Agent技术和模糊评价方法相结合的决策方法为研究铁路应急救援的智能化提供了新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号