共查询到18条相似文献,搜索用时 31 毫秒
1.
2.
图像分割是视觉检测领域中的重要环节。由于舰船环境和图像数据的复杂性,现阶段舰船图像自动分割技术中的抗光照性能差、精度低以及边缘模糊等问题仍普遍存在。如何有效完成对舰船图像进行自动分割成为一大难题。为了有效解决上述问题,对当前图像分割方法进行深入的研究和调查,提出通过自适应阈值法的舰船图像自动分割方法,在总结和分析了现有自适应阈值分割算法存在的优点和局限性后,给出了自适应阈值图像分割法的改进方案,以便从复杂的舰船图像背景中分离出目标区域,有效解决当前图像分割技术中光照不均匀、边缘模糊等问题。为验证方法有效性进行了仿真实验,实验结果证实该方法性能效果相对较好,充分满足对复杂舰船图像进行分割的设计目标。 相似文献
3.
基于最大模糊总熵准则自动选择灰度图像分割的最优阈值 总被引:4,自引:0,他引:4
图像不仅含有由统计不确定性产生的信息量,而且含有模糊不确定性产生的信息量。我们通过用来测度统计信息的香农熵为模糊总熵,开发出基于最大模糊总熵准则的最优阈值技术,它是熵阈值技术的良性拓广,实验表明它能在二值化后保留更多的图像信息,取得更好的图像分割效果。 相似文献
4.
5.
为了提升多目标自动分割和分类效果,设计了基于模式识别的图像中多目标自动分割和分类方法。利用分水岭算法提取图像中多目标过分割区域;通过模式识别中改进模糊C均值聚类算法,聚类处理提取的多目标过分割区域,得到多目标自动分割结果;在模式识别中的卷积神经网络内,输入自动分割结果,输出多目标自动分类结果。实验证明:该方法可有效获取多目标过分割区域,得到多目标自动分割结果;在不同图像分辨率时,该方法自动分割的划分系数较大、划分熵较小,即自动分割效果较佳;该方法具备多目标自动分类的可行性,且自动分类精度较高。 相似文献
6.
《舰船科学技术》2019,(24)
当前舰船图像自动分割方法存在"过分割"或者"欠分割"现象,使得舰船图像自动分割误差大。为了提高舰船图像自动分割精度,提出了基于深度卷积网络的舰船图像自动分割方法。对当前舰船图像自动分割的研究现状进行分析,找到引起舰船图像分割误差的原因。采用活动轮廓模型对舰船图像进行粗分割,并找到其中的舰船图像错误分割区域。最后,采用深度卷积网络对舰船图像的错误分割结果进行校正,实现舰船图像进行精细分割,并与活动轮廓模型的舰船图像自动分割方法进行了对比实验。结果表明,相对于活动轮廓模型,深度卷积网络的舰船图像分割精度更高,降低了舰船图像的误分割率,验证了本文舰船图像自动分割方法的优越性。 相似文献
7.
8.
9.
我国很多地区都是高风能地区,非常适合发展风力资源,尤其是海上风能资源的开发。但海上风能的开发受到设备的影响,在风力集中的地方,环境也十分恶劣,设备的损坏率较高,对于海上风力发电设备的运行会产生较大影响。本文首先分析了研究风机叶片裂纹检测的学者及其使用的检测方法。其次,分析了图像分割技术,主要包括对原有图像分割算法的改进,结合相关交叉学科的新理论寻求新的图像分割算法,以及对不同图像分割算法匹配合适的图像分割评价方法和评价准则。分析了基于区域分割、边缘检测及其他图像分割方法及其应用效果。大多数研究人员在对检测风机叶片裂纹时都使用较新技术来提高识别率,再将不同的方法进行结合运用,同时也不断尝试发掘新的图像分割算法以得到更好的效果。针对不同研究目标使用不同算法得到的效果准确度各有差异,因而针对不同模态的图像要结合不同的理论选取合适的方法。不管是引入新的概念和理论,还是将优势互补的算法相结合,都以提高风机叶片检测的精确度为目标。 相似文献
10.
11.
12.
传统船舶图像分割方法存在分割误差大,抗噪声干扰能力差、分割效率低等缺陷,为了解决传统船舶图像分割方法存在的不足,设计了基于模糊聚类算法的船舶图像分割方法。首先对当前船舶图像分割研究进展进行分析,指出不同传统船舶图像分割方法存在的局限性,然后对船舶图像进行去噪处理,提高船舶图像质量,改善抗噪声干扰能力,最后引入模糊聚类算法进行船舶图像分割,并采用多幅标准船舶图像与传统船舶图像分割方法进行对比测试。测试结果表明,本文方法可以对船舶图像进行高精度的准确分割,能够保留船舶图像边缘的重要信息,船舶图像分割速度可以满足实际应用的要求,获得了比传统船舶图像分割方法更优的结果,具有更加广泛的应用范围。 相似文献
13.
针对传统的船舶吃水深度检测方法精准度低的情况,提出基于图像分割的船舶吃水深度检测方法。以得到精准的舰船吃水值为出发点,采集舰船吃水图像,并进行动态模板匹配,减少舰船晃动对吃水深度检测的影响,在此基础上,对船舶水尺图像字符进行校正,计算吃水线位置,得到舰船吃水深度,以此实现船舶吃水深度检测。实验对比结果表明,此次设计的基于图像分割的船舶吃水深度检测方法比传统的吃水深度检测精准度高,具有一定的实际应用意义。 相似文献
14.
船舶图像特征分割和提取算法是图像检测领域中的基础工作。由于船舶航运环境和船舶自身结构组成相对复杂,船舶图像的全自动分割方法在图像检测过程中经常出现边缘模糊、准确性低等问题。因此提出基于图像检测的船舶特征分割与提取优化算法,结合免疫算法获取更多图像特征信息,达到快速、准确的对船舶图像特征进行提取和分割的目的。为验证算法的准确性进行仿真实验,结合船舶区域图像对图像边界特征进行提取和分割,并与传统方法进行比较。实验结果证明基于图像检测的船舶特征分割与提取优化算法可以有效达到特征融合、全局最优、算法效率高等优良特性,使图像具有更强的实用性。 相似文献
15.
当前图像分割算法存在分割错误率高、分割速度无法满足实际应用要求的缺陷,为了提高图像分割的精度和速度,设计了基于神经网络和多特征的图像自动分割算法。首先分析当前国内外图像分割算法的研究进展,找到引起当前图像分割局限性的因素,然后从图像中提取描述不同目标特征,并选择部分最有效特征组合成为图像分割的特征集合,最后采用神经网络对图像的不同区域进行建模和分类,实现图像分割,并与其他图像分割算法进行优越性对比测试。结果表明,神经网络和多特征的图像分割错误率低,图像分割精度超过95%,图像分割平均值时间要少于对比图像分割算法,图像分割速度更快。 相似文献
16.
17.