首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
为验证不同速度等级、不同列车长度下的点式列车自动控制(ATC)系统是否能够满足城市轨道交通的运营能力需求,依据点式ATC系统特点及信号系统设计的相关要求,推出列车在区间和车站最小追踪间隔的计算模型,并根据计算模型给出了能力影响因素,得出最小追踪间隔与最高运行速度及列车长度之间的关系。通过仿真计算,得出不同速度等级、不同长度下列车运行的最小追踪间隔,验证了计算模型的合理性,并给出了不同速度等级及列车长度下点式ATC系统的适用情况。  相似文献   

2.
点式ATP(列车自动保护)是CBTC(基于无线通信的列车控制)的降级模式。以西安地铁2号线信号系统为例,在分析点式ATP信号系统原理的基础上,结合用户经验,对点式ATP模式下紧急停车及跳停功能的缺陷进行了研究,并提出了相应的解决方法。  相似文献   

3.
城市轨道交通列车自动控制的点式ATP(列车自动保护)方案作为CBTC(基于通信的列车控制)方案的后备模式,已经从最初简易的安全功能正在向完善细节功能发展。介绍了点式ATP模式下信号防闯功能及与站台屏蔽门联动功能的需求和实现方式,并提出了点式ATP下的防闯功能及与站台屏蔽门联动功能的优化设计方案。  相似文献   

4.
城市轨道交通列车运行的自动化、自主化程度越高,其安全与效率也越依赖于信号系统。而当信号系统故障导致列车采用ATP切除的人工驾驶模式运行时,列车运行的安全则完全由司机保证,缺少设备层面的保障。针对该情况,基于二次雷达技术研究的地铁列车防撞预警系统,能够不依靠信号、通信等其他系统,实现前、后列车追踪间距预警提示,从而为无ATP防护的人工驾驶列车提供设备层面的辅助安全保障。  相似文献   

5.
追踪间隔是衡量城市轨道交通系统性能的重要指标,影响着城市轨道交通的运行安全和运输效率。CBTC车地通信系统采用无线通信的方式,其通信延迟是影响追踪间隔的主要原因之一。分析通信延迟对列车追踪间隔组成部分中的列车安全包络的影响,根据无线通信理论和IEEE 802.11协议无线通信流程得出无线通信延迟与列车速度之间的约束关系,在此基础上结合移动闭塞下追踪间隔的特点,提出用非线性规划求解约束条件下的列车追踪间隔计算方法。仿真结果显示通信延迟对追踪间隔的影响是非线性的,并给出不同通信延迟、列车追踪间隔和最大允许速度三者之间的关系。结论可为评估运输效率、优化列车追踪间隔和保障列车运行安全等问题提供依据。  相似文献   

6.
介绍了城市轨道交通不同信号闭塞方式及其追踪列车间隔时间的计算方法,建立了多列车追踪运行的仿真系统,并进行了算例的设计。在算例中,通过对两列车在固定闭塞、准移动闭塞、移动闭塞方式下的追踪运行模拟,分析了不同闭塞方式下列车追踪运行的效果,同时利用仿真系统对最小追踪列车间隔时间进行了验算,并得出相同发车间隔情况下不同信号闭塞方式的列车追踪运行结果以及三种闭塞方式条件下最小追踪列车间隔时间的计算结果。该系统可以为科研、设计人员进行城市轨道交通列车安全间隔及通过能力等方面的研究提供便利条件。  相似文献   

7.
以杭州地铁5号线采用的BiTRACON信号系统为例,分析了地铁工程车加装ATP防护系统的必要性,介绍了系统的功能需求,阐述了工程车ATP防护系统中车载设备及轨旁子系统的组成;重点介绍了列车筛选与追踪防护原理、救援场景和不同编组设计,以及与车辆的接口等关键技术,可为后续城市轨道交通工程车增加ATP防护系统提供参考。  相似文献   

8.
介绍轨道交通信号系统后备模式的必要性,重点介绍CBTC系统后备模式下信号系统的实现方式,通过点式ATP方式加防护小区段的方案解决列车实现单红灯闭塞。  相似文献   

9.
影响城市轨道交通通过能力的关键因素是折返站的折返间隔,提高车站折返间隔可采用合理配置车站配线、优化信号系统控制、优化车辆性能、压缩停站时间等措施。文章从分析典型站折返的作业项目和作业时间入手,提出影响折返间隔的因素和优化措施;并重点从优化信号系统控制的角度,根据联锁进路控制原理、列车控制原理,提出通过联锁设计、ATP设计、ATO设计以及设备选型来提高折返站折返能力的方法。  相似文献   

10.
关于城市轨道交通CBTC计算机联锁子系统的研究   总被引:1,自引:0,他引:1  
近年来,基于通信的列车控制技术(CBTC)以其显著优势,逐渐成为城市轨道交通信号系统的首选方案。传统的联锁技术无法支撑CBTC信号系统的安全、高效、高自动化的要求。CBTC信号系统中的联锁子系统不仅要提供联锁逻辑保障,还要支持移动闭塞、点式ATP控制、以及不同模式列车的混跑等需求。文章简要介绍了基于CBTC技术的国产化联锁系统的架构、功能方面的创新和技术特点等。  相似文献   

11.
针对利用既有干线铁路开行市域(郊)列车,实现短追踪间隔公交化运营,同时兼顾地铁车辆跨线运营的实际需求,以北京铁路枢纽利用既有东北环铁路增建第二线开行市域(郊)列车典型工程为例,从满足中国铁路北京局集团有限公司负责运输管理、支撑公交化运营和国铁干线功能等多个方面对信号系统制式的选择,进行全面分析比选论证,提出采用CTCS-2级列控系统叠加自动折返功能ATO的信号系统设计方案,并对干线铁路、城际铁路、市域(郊)铁路、城市轨道交通融合发展的信号系统技术方案进行展望。研究表明,提出的CTCS-2+具备自动折返功能的ATO信号系统方案能满足本线市域(郊)列车公交化运行、保障国铁干线功能、实现北京地铁19号线跨线运营和调度指挥管理纳入中国铁路北京局集团有限公司的工程需要,并为干线铁路、城际铁路、市域(郊)铁路、城市轨道交通的融合发展提供了一种可供工程实施的信号系统技术方案。  相似文献   

12.
介绍了市郊轨道交通的运营特点以及列车控制信号系统在铁路与城市轨道交通的应用。通过对ETCS、CTCS、ATC等3种现代标准列控信号系统功能特点与市郊轨道交通运营实际需求的对比分析,提出了市郊轨道交通信号系统的解决方案(即点式ATC信号系统)。  相似文献   

13.
针对信号系统标准点式ATP(列车自动防护系统)降级方案下出现的驾驶模式转换初始化、进路命令变更、列车误启动、保护区段解锁等常见且无法妥善解决的问题进行分析,结合宁天城际实际工程对降级方案信息传输方式的比选,提出连续型点式方案,并针对此方案应用于工程实现各项功能出现的实际问题,分析系统设计因素及信息处理方式,使点式系统更进一步倾向于闭环系统。  相似文献   

14.
介绍了深圳轨道交通二期蛇口线信号系统下的列车驾驶模式及转换原则,以及在CBTC模式或点式ATP模式、不同设备故障情况下可用的驾驶模式。  相似文献   

15.
在城市轨道交通运行系统中,列车在折返区域的追踪间隔是单条线路提升运力的瓶颈.分析北京地铁5号线折返追踪间隔,以实现“列车2 min运行间隔”的目标.首先根据现场实测数据分析5号线列车在折返区域中的进站追踪能力、折返追踪能力和出站追踪能力,进而计算列车在折返区域的最小运行间隔;其次,基于列车运行图编制理论提出通过缩短列车站停时分、出入库时分、转台时分来减小列车折返追踪间隔的方法;最后,结合北京地铁实际的运营管理经验,从系统设计角度提出缩短城市轨道交通列车折返追踪间隔的技术手段和措施.  相似文献   

16.
针对信号系统标准点式ATP(列车自动防护系统)降级方案下出现的驾驶模式转换初始化、进路命令变更、列车误启动、保护区段解锁等常见且无法妥善解决的问题进行分析,结合宁天城际实际工程对降级方案信息传输方式的比选,提出连续型点式方案,并针对此方案应用于工程实现各项功能出现的实际问题,分析系统设计因素及信息处理方式,使点式系统更进一步倾向于闭环系统。  相似文献   

17.
[目的]城市轨道交通T2T(车车通信)列控系统是一种新型的信号系统,其通过资源化管理方式对轨旁设备进行管控。为了验证该系统的优越性,需对该系统下的列车运行效率进行分析。[方法]针对T2T列控系统,基于资源管理层面和安全防护原理的特点,在折返工况下,将原本由联锁控制的双动道岔转变为两个单动道岔,并基于列车精确自定位实现ATP(列车自动防护),提高了岔区线路资源的使用能力;在区间和车站追踪工况下,通过前后车对于车速、加速度、所处线路位置等信息的实时互传,利用相对速度安全防护原理进一步缩小了列车的追踪间隔。通过上述两方面的技术革新,结合城市轨道交通线路的实际数据,对站后交叉渡线折返、站前单渡线折返、区间与车站追踪等运营场景进行了模拟仿真计算,确定了T2T列控系统的折返能力和区间追踪能力。[结果及结论]相较传统的CBTC(基于通信的列车控制系统),T2T列控系统在折返能力、追踪能力等方面均有着显著提升,更加适应于超大运量的城市轨道交通线路;T2T列控系统架构简单,轨旁设备少,尤其适合城市轨道交通的大修改造项目。  相似文献   

18.
从信号系统控制列车的角度研究如何减小列车在越江区间的最小追踪间隔问题,以提高长大越江区间线路通过能力。首先,介绍移动闭塞模式下列车通过越江区间的运行方式,信号系统需保证线路正常运营,越江段区间风井之间仅有1列车运行;其次,结合列车运行特点,参考UIC406能力分析方法推算出移动闭塞模式下列车在越江区间内最小追踪间隔的计算模型,得出最小追踪间隔与列车在越江区间中运行速度之间的函数关系;然后,通过对所得的函数进行求导,推算出列车在区间中的最高运行速度、接近速度的取值及对最小追踪间隔的影响,并求得函数的极小值;最后,通过仿真软件验证计算模型的合理性并提出信号控制列车的优化方案。  相似文献   

19.
城市轨道交通国产ATP车载设备超速防护功能的仿真实现   总被引:5,自引:2,他引:3  
在城市轨道交通列车自动控制系统(ATC)中,列车自动防护(ATP)系统担负着列车运行间隔控制,进路控制,超速防护的重要作用,是列车运行自动控制的基础,其中,ATP车载设备是ATP系统中保证行车安全的关键设备。它根据地面信息和机车信息生成列车速度控制曲线,并与列车实际速度进行比较,监督列车运行,实现超速防护,零速检测,无意识移动防护,制动确认和车门防护等功能。本文在介绍ATP系统仿真的基础上,重点阐述了ATP车载设备列车速度控制模式曲线的仿真计算方法,并以北京地铁一号线的线路参数为例,对ATP车载设备的速度控制模式曲线进行了仿真,实现了车载ATP的超速防护功能,目前,整个ATP仿真系统已正式投入运行,取得了预期的效果。  相似文献   

20.
针对城市轨道交通列车运行的特点,以发车时间、停站时间、区间运行时间、追踪间隔为约束条件,以列车总晚点时间和总晚点数目为综合优化目标,构建城市轨道交通列车运行自动调整模型。采用改进的遗传算法对该模型进行求解。并对实例进行仿真测试验证,仿真结果表明,此模型和算法可以满足自动运行调整的需要。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号