首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以北京地铁10号线劲松站为例介绍采用洞桩法开挖地铁车站的顶纵梁施工技术。顶纵梁是PBA工法施工浅埋暗挖地铁车站的关键结构,它与主体围护桩顶冠梁共同支撑车站上部结构,并将荷载传递给主体围护桩及钢管柱。顶纵梁施工中做好模板支架设计、防水层施作、施工缝处理、预埋件安装、混凝土灌注以及填充注浆每道工序的工作。  相似文献   

2.
结合郑州市第一座独柱高架地铁车站工程实例,采用三维有限元模型,对多遇地震下墩柱混凝土压应力、钢筋压应力、钢筋拉应力、墩柱稳定性应力进行分析,对罕遇地震下墩柱弯矩进行了分析。同时在抗震要求下,对结构强度,结构变形进行分析计算,结果表明独柱高架地铁车站主体结构在地震作用下是安全,可靠,能够达到抗震设计要求。  相似文献   

3.
张捍东 《铁道建筑》2020,(3):104-107,117
以昌赣客运专线(35+40+60+300+60+40+35)m混合梁斜拉桥为例,建立了大跨度斜拉桥上无砟轨道精细化模型计算分析不同荷载作用下大跨度桥上无砟轨道纵向力。计算结果表明:在温度荷载作用下,钢轨纵向应力相对较大,最大拉应力为130.03 MPa,跨中轨道板纵向应力较小。在竖向荷载作用下,钢轨、轨道板和底座板的拉应力最大值出现在桥塔附近,压应力最大值出现在跨中附近,其中钢轨压应力最大值为15.02 MPa,底座板拉应力最大值为3.05 MPa。在列车制动作用下,钢轨、轨道板和底座板的拉应力最大值出现在跨中附近,压应力最大值出现在桥塔附近,轨道板和底座板纵向应力均较小。  相似文献   

4.
文章基于苏州地铁某车站,采用现场实测与数值模拟相结合的方法,研究深基坑开挖对周围土体影响规律,分析新建车站施工对临近既有车站受力变形影响。经研究,基坑开挖前2/3深度时,对周围土体扰动主要表现为沉降范围扩大,继续开挖及随后的回筑阶段对周围土体的扰动以沉降量增加为主;新建车站施工,既有车站地下一层侧墙受压,最大压应力出现在顶板高度处,地下二层侧墙以受拉为主,且拉应力处于较高水平,最大拉应力出现在该层中部;新建车站施工时,既有车站靠向基坑方向倾斜;既有车站顶板靠近基坑一端出现沉降,随开挖深度增加顶板逐渐抬升,开挖过程中沉降值减小45.8%。  相似文献   

5.
以某地铁桥建合一高架车站为实例进行隔震结构计算分析。采用ETABS软件建立隔震结构模型,对隔震支座在罕遇地震下的水平位移,隔震支座最大剪力、轴力、压应力及其拉应力进行计算,并对高架车站隔震结构与非隔震结构的经济指标进行对比分析。结果表明,隔震结构计算结果满足规范要求,高架车站隔震结构比非隔震结构造价降低,具有更好的经济性,安全度大大提高。  相似文献   

6.
以珠机城际横琴隧道3#工作井~金融岛车站区间4#横通道为工程背景,采用冻结加固设计方案进行施工,并取得了良好的加固效果。针对横通道冻结法施工形成的形状复杂的冻土帷幕结构,利用FLAC3D对冻结法施工进行了数值模拟研究,通过对比现场监测数据,得到冻结帷幕的变形特性、应力分布特性以及开挖造成隧道周围管片应力的重新分布情况等。研究表明:拱顶沉降的数值模拟结果与现场监测值基本相同,说明数值模拟具有一定的科学性和合理性;横通道开挖前对通道内土体预加固能有效改善横通道拱顶和拱底的受力状态;喇叭口处作为整个冻土帷幕的最薄弱处,施工中需特别注意;横通道开挖容易使主隧道管片处于受拉状态,且拉应力多分布在开口环的对侧。  相似文献   

7.
某出口铁路漏斗车下侧墙与下横脊连接处出现批量裂纹故障,为分析故障产生的原因并寻求解决措施,采用Sysweld焊接仿真软件对连接处的焊缝进行焊接仿真分析,基于热弹塑性有限元法仿真预测其焊接温度场、残余应力及屈服强度。结果表明,该车下侧墙与下横脊连接圆角处易于产生较大的焊接残余应力,其米塞斯应力达到693.0 MPa,特雷斯卡应力达到764.5 MPa,最大拉应力为z方向主应力σz,达到661.7 MPa,最大压应力为x方向主应力σx,达到424.2 MPa,焊接残余应力最大值已超过材料的强度极限,在运用过程中载荷应力的叠加影响下,圆角部位极易产生裂纹源,持续的载荷应力促进了裂纹的扩展。车辆实际产生的裂纹故障情况与仿真预测结果一致。  相似文献   

8.
采矿爆破时,在岩土体内由于炸药爆炸释放出的大量能量有一部分转换成地震波,地震波对隧道围岩或既有建(构)筑物结构可能造成损伤。为评估采矿活动对隧道结构安全性的影响,采用数值分析方法对既有铁路隧道衬砌混凝土的迎爆侧应力及位移进行了分析。结果表明:衬砌迎爆侧拱脚处最大拉应力4.32 MPa,超过了C25混凝土抗拉强度设计值,拱肩压应力达到9.6 MPa;在长期的爆破过程中尤其是在衬砌出现裂缝后,隧道衬砌迎爆侧整体承载力明显下降,迎爆侧拱肩处易产生水平向的拉伸破坏,为最危险区域。  相似文献   

9.
介绍了以钢横梁受力为主的钢管混凝土拱桥桥面系出现病害的情况,分析病害产生的原因为超载车辆作用,以及钢纵梁参与了结构整体受力,导致了纵横梁连接部位焊缝处存在较高的应力幅,出现了材料的疲劳破坏,进而对采用大纵梁体系的加固方案进行了深入的探讨。  相似文献   

10.
为分析某铁路连续钢桁梁桥纵横梁联接处纵梁牛腿托架裂纹产生的原因,通过在已开裂和未开裂牛腿托架竖板上布置动应力测点,测试其在试验列车作用下的受力情况;另外建立有限元模型计算分析该处受力情况,得出该处裂缝是由于设计构造细节上的缺陷、桥墩不均匀沉降、活载作用等多种因素综合作用所致的疲劳裂纹,并提出改进加固措施:把牛腿托架水平板延伸至竖板根部,可有效降低其应力水平,提高其抗疲劳能力。  相似文献   

11.
地铁盾构隧道下穿城际铁路地基加固方案安全性分析   总被引:7,自引:0,他引:7  
苏州某地铁盾构隧道下穿沪宁城际铁路施工时,原有铁路地基加固方案产生的沉降量不能满足高速铁路的要求,因此,结合原加固措施,采用板+桩组合结构的形式对地基进行加固.对此方案,采用二维有限元法分析不同应力释放率下盾构施工引起的地表沉降规律.当应力释放率为30%时,盾构下穿处板+桩组合结构的沉降量为3.9 mm,满足高速铁路无砟轨道对工后沉降的要求,但此时板+桩组合结构中的加固板将与其下方土体脱离.采用三维有限元方法,对高速铁路轨道结构进行静、动应力响应分析.结果表明:当加固板与其下部土体脱离时,在自重应力作用下,钢轨轨面的最大变形为0.582 mm,满足轨道不平顺的要求;在最大列车动荷载作用下,轨道板和加固板的最大拉应力分别为0 93和1.02 MPa,均小于规范中所要求的疲劳强度修正值.由此可知,在盾构隧道下穿施工时,城际铁路地基采用板+桩组合结构形式的加固方案,是能够保证运营安全的.  相似文献   

12.
介绍盖挖逆作车站的做法以及地下四层盖挖逆作车站结构设计需重点研究的抗浮、侧墙顶拉弯应力控制、钢管柱受力控制、钢管柱施工误差控制、中间桩与边桩差异沉降控制等5个关键问题,并结合合肥轨道交通1号线大东门站地下4层盖挖逆作车站设计实例进行研究,得出采用板墙隼槽连接、AM桩、HPE液压垂直插入钢管柱工法等措施可以很好解决上述5个问题,相关研究结果可供类似工程参考。  相似文献   

13.
针对朔黄铁路某隧道隧底不密实病害,分析了隧底不密实病害的主要成因。提出采用聚氨酯树脂填充隧底吊空等不密实处以及固结虚砟的隧底加固方案。采用有限元软件ANSYS建立数值分析模型,以Ⅴ级围岩隧道为例,借助于现场实测30t轴重列车轮轨力时程曲线,分析隧底不同密实度以及加固后的隧底结构动力响应。结果表明:在取Ⅴ级围岩弹性模量的中值1.5GPa作为隧底密实度标准值的条件下,30t轴重列车通过隧底密实度仅为标准值的7%的隧道时,其隧底结构产生最大为1.05 MPa的拉应力,隧底结构的应力水平超过0.5ft(ft为计算混凝土抗拉极限强度,取2.01 MPa),从而导致隧底结构的疲劳问题;采用聚氨酯树脂对隧底结构加固后,隧底结构的应力水平降低至0.13ft,消除了疲劳破坏的隐患,而且隧底结构的振动加速度也得到明显的降低,验证了采用聚氨酯树脂的加固方案适宜于重载铁路隧底的加固。  相似文献   

14.
以一座大跨度曲线矮塔斜拉桥为研究对象,分析剪力滞、箱梁畸变、扭转等空间效应对梁体应力状态的影响。分析结果表明:考虑空间效应后,在移动荷载作用下,顶板拉应力和底板压应力增大,最大增幅分别为1.20 MPa和1.29 MPa,顶板压应力和底板拉应力减小,最大减幅分别为0.95 MPa和1.35 MPa;在恒载作用下,顶板压应力减小,最大减小2.16 MPa,底板压应力增大,最大增加3.27 MPa。在此基础上分析了半横隔板箱梁在斜拉索锚固处的剪力分配问题,结果表明,剪力由横隔板和翼缘板共同承担,且横隔板承担剪力不超过50%,可按照横隔板和翼缘板共同抗剪进行设计。  相似文献   

15.
为确保附属结构施工过程中装配式车站主体的安全与稳定,需要了解附属结构施工过程中装配式车站主体结构的力学规律。以深圳地铁装配式车站13号线市中医院站为工程背景,通过有限元数值计算,对附属结构的施工过程中装配式车站主体的内力和变形进行分析。计算表明:①附属结构基坑开挖导致主体结构整体有向附属开挖一侧变形的趋势,结构内力出现重分布,附属结构施工开挖过程中主体拱顶弯矩最大增幅在开挖1阶段;②在附属结构施工过程中可以采取主体顶板上方设置临时支撑、主体拱顶对拉连接、加强支护刚度等措施对装配式车站主体的内力及变形进行控制,其中主体顶板上方设置临时支撑措施的效果显著。结合设计措施的计算及实施情况对控制措施的设计应用进行研究,为装配式地铁车站的设计提供借鉴。  相似文献   

16.
选取西安市一地铁车站结构,采用Midas GTS有限元软件建立模型,结合阪神地震中的车站的震害现象,来分析印证地下车站结构的地震响应。计算结果表明:地震对结构影响较大的地方在顶、底板与柱相交处,柱子是整个车站结构中最脆弱的构件。地震荷载组合对车站的结构配筋不起控制性作用。在边墙及纵梁处均设置加腋,控制柱的轴压比,配置好柱的抗震箍筋,可以有效提高车站的抗震能力。该研究成果可为西安市地铁车站结构的抗震设计提供参考。  相似文献   

17.
为研究钢桥对接接头焊接残余应力及变形场的分布规律,基于ABAQUS软件建立16mm厚Q345qD钢板多层对接焊三维有限元模型,对焊接残余应力及变形场进行模拟预测,并对模拟结果进行试验验证。结果表明焊接残余应力和变形的数值模拟结果与试验实测值吻合较好。对接接头纵向焊接残余应力沿垂直于焊缝方向成拉-压分布状态,其最大值位于热影响区,约为350 MPa,接近材料的屈服强度;纵向残余应力在距焊缝中心60mm范围内为拉应力。横向焊接残余应力的应力水平相对较低,最大值约为100 MPa。焊接变形主要以平面外变形为主,变形模式为马鞍形,最大变形值发生在试板中部远离焊缝中心的外边缘。  相似文献   

18.
研究目的:东南沿海地区风灾频发,对站房钢结构稳定性影响巨大。为预测大型悬挑异型曲面钢结构在施工过程中发生的强度破坏和安全事故,本文以宁波站站房南北两侧"雨滴"钢结构为工程背景,通过有限元数值模拟和现场实际监测对"雨滴"钢结构进行稳定性分析和监测控制研究,找出大跨度悬挑结构在施工过程中的危险区域,从而提出针对危险区域的应对措施。研究结论:(1)通过有限元MIDAS/GEN对施工过程中位移及应力进行数值模拟,得到变形最大值都在2号弧形梁S2. 3、S2. 4处,变形值分别为40. 739 mm、42. 718 mm、43. 711 mm;(2)在施工过程中,对卸载、加上幕墙重量和考虑台风三种工况进行应力与变形监测,得到三种工况下实测变形最大值都在2号弧形梁S2. 3、S2. 4处,变形值分别为42. 362 mm、42. 312 mm、48. 323 mm;(3)通过实测数据与模拟结果的对比,应力最大值在结构根部位置,最大值为166 MPa,施工前应对根部进行加固处理;(4)"雨滴"钢结构结构最大应力监测数值与模拟数值大体一致,施工过程在安全可控范围内;(5)本研究成果可为日后类似钢结构的施工和稳定性评价提供相关参考。  相似文献   

19.
为解决繁华城区地铁车站采用明挖法施工带来的管线迁改、交通拥堵等难题,以下穿大型箱涵的深圳市轨道交通12号线沙三站为工程背景,采用有限元方法进行基于超大断面矩形顶管法的预制装配式地铁车站机械化暗挖建造方案研究。结果表明:顶进工况、结构转换工况和永久结构工况下,单柱方案最大变形分别为5.07,6.50和6.63 mm,双柱方案最大变形分别为5.53,5.20和10.50 mm,施工全过程中单柱方案车站结构整体变形较小;单柱、双柱方案的混凝土结构最大压应力分别为15.7和29.2 MPa,双柱方案须增大柱截面积以满足强度设计要求,因此单柱方案更经济合理;单柱方案中纵梁最大正、负弯矩绝对值均大于双柱方案,且满足强度设计要求,即单柱方案中纵梁受力更明确、抗弯性能充分发挥;预制管节环向接头分别按刚接、铰接设计时,单柱方案车站结构截面设计控制弯矩分别为最大正弯矩、最大负弯矩,考虑到接头实际刚度应介于刚接与铰接之间,结构设计时应按照接头刚接和铰接进行包络设计。  相似文献   

20.
采用考虑车站建造全过程影响的计算模型对典型地铁车站结构内力随建造过程的变化规律、分布模式及控制弯矩进行分析,并与不考虑建造过程的一次加载模型所得结果进行对比,研究建造过程对车站最终内力及其截面设计的影响。研究结果表明:采用考虑车站结构建造过程的方法时,在基坑开挖阶段,最大弯矩值逐渐增大,其位置逐渐下移;在主体结构回筑阶段,中板以上结构弯矩值增大,最大弯矩值点上移;在运营阶段,结构内力进行略微调整。采用考虑车站结构建造过程的方法时,顶板两端节点处弯矩值较大,且顶板至中板间的侧墙全部处于迎土面受拉状态;中板至底板间的侧墙处于背土面受拉状态;底板弯矩分布呈两端小、中柱附近大的特点。当忽略车站结构建造过程时,车站底板两端弯矩及连续墙负弯矩将远大于该处弯矩承载限值,而连续墙正弯矩偏小;当采用考虑车站结构建造过程的方法时,结构内力趋于合理,且均处于承载力允许范围,但连续墙最大负弯矩较前一方法明显偏小。为了保证结构的整体可靠性,设计中可考虑采用两种计算模型所得结果的包络线进行截面设计,但为了避免这种做法可能导致的过度设计,可以对负弯矩较大处采用调幅设计。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号