首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以北同蒲韩家岭至应县增建四线工程为例,介绍提速或新建自动闭塞区段,车站股道有效长超过轨道电路极限长度而需分割为两个轨道区段,以及正向发车进路与反向接车进路共用发送器且载频自动切换的ZPW-2000A站内电码化电路特殊设计的原理及遵循的设计原则。以一个车站为例,阐述了该工程电码化的特点及原则,分析了电码化各个单元电路的原理,并针对车站股道分割及载频自动切换特殊情况下的电码化设计给出了解决方案。  相似文献   

2.
讨论了CAD技术在铁路预叠加ZPW-2000A站内电码化工程设计中的应用,对系统基本结构、系统功能和实现技术进行了阐述。只简单通过对轨道继电器类型、电码化进路及其轨道区段的基本定义,即可通过系统分析与软件逻辑推理自动生成所有工程设计图。  相似文献   

3.
1问题提出 在北京枢纽的自动闭塞和车站电码化改造过程中,北京东站对星火方向半自动闭塞接近区段的长度为1700m,此区段需要进行25Hz相敏轨道电路叠加ZPW-2000A电码化改造.在正常情况下,道碴电阻为1.0Ω·km并安装补偿电容时,轨道区段入口电流能满足电化区段机车信号接收灵敏度要求(≥450mA).但若轨道区段长度为1700m,则随着区段长度的延长,入口电流不断衰减,远端入口电流将不能满足机车信号接收灵敏度的要求.目前解决正线超长区段的方法是将区段一分为二.但这种方法需要锯轨,增加了工程投资和实施难度.本文就以轨道区段为1700m为例,提出适合的解决问题方法.  相似文献   

4.
在轨道区段中存在一种室外有分割而联锁按一个区段处理的特殊情况,会造成集中监测系统因采集轨道电路开关量和模拟量不匹配而发生误报警的问题。归纳总结了出现此类区段的3种典型场景,分析了出现误报警的原因,并提出了对应解决措施,对今后其他类似情况具有参考意义。  相似文献   

5.
近年来,我国铁路大面积使用ZPW-2000系列信号设备。全国各大铁路枢纽也逐步进行相应的闭环电码化改造。由于枢纽站场情况复杂,常会出现包含较多轨道区段的接车或发车进路。  相似文献   

6.
朔黄线区间闭塞采用UM71自动闭塞系统,它是一项新设备。为了便于信号维护人员的学习,简要讲述UM71信号系统、自动闭塞轨道区段编号原则、车站电码化联锁电路、表示灯电路,旨在加深对UM71改进型车站电码化的认识,提高信号维护人员的技术业务素质。  相似文献   

7.
以电气化区段25Hz相敏轨道电路预叠加ZPW-2000二线电码化为例,对工程设计中电码化相邻非电码化区段防护措施进行探讨。  相似文献   

8.
当列车从侧线股道出发按侧线运行速度行驶至总出发信号机接近区段时,若该区段无电码化,就会增加司机的劳动强度,同时也影响运输效率,因此,总出发信号机接近区段增加电码化很有必要.  相似文献   

9.
某车站站内电码化类型为微电子交流计数设备,短列车或单机车(以下简称单机)按开放的进站信号进入带中岔股道停车,进入该股道第1个区段机车信号显示“半黄半红”灯,进入第2、3区段机车信号显示白灯,机车接收不到地面机车信号,象进入电码化盲区,出现机车信号掉白灯现象,使安全生产受到威胁。  相似文献   

10.
车站移频股道电码化机车信号防干扰技术探讨   总被引:1,自引:1,他引:0  
1车站移频电码化干扰的形成 铁路车站电气集中的站内轨道电路是反映列车占用情况的基础设备。当列车正常进入车站后,为保证机车信号设备能够正常工作,相应的站内轨道电路转发或叠加发送机车信号信息。由于受到移频信号在频率选择、低频信息使用及机车信号接收灵敏度等诸多因素影响,机车信号经常接收到相邻轨道区段或邻线的干扰信号,导致错误显示。分析车站移频电码化干扰,主要有以下几个因素。  相似文献   

11.
合肥电务段管辖京九线15站(王楼-阜南站),于2005年10~11月新上ZPW-2000A移频自动闭塞及ZPW-2000A站内闭环电码化.在此次“三改四”工程中,所有自动闭塞轨道电路接收器均设置了检查相邻小轨道载频小频率选型条件,即本区段的接收器只接收运行内方相邻区段的小轨道信息.具体地说,就是如果内方轨道载频为1700-1(1701.4Hz),则本区段的轨道接收器只能接收规定的1700-1载频;如果本区段的轨道接收器没有接收到相邻小轨道1700-1载频,或只接收到1700-2(1698.7Hz)、2300-2(2298.7Hz)载频,则本区段接收器接收的后方区段小轨道执行条件就会停止输出,从而造成运行后方相邻区段轨道继电器落下.这样做的目的是为防止由于后方电气绝缘节破损,如空心线圈损坏等原因导致电气谐振区谐振槽路的极阻抗、零阻抗发生变化,从而使本区段有可能混入前方轨道区段的1700-2载频或2300-2载频,造成信号升级显示或错误显示.  相似文献   

12.
浅谈97型25Hz相敏轨道电路的调整   总被引:2,自引:0,他引:2  
目前,97型25Hz相敏轨道电路正在我国电气化牵引区段及非电气化牵引区段广泛应用,在现场维修及施工中,发现一些信号维修及施工人员对97型25Hz相敏轨道电路的调整方法掌握不当,尤其是在电化区段预叠加ZPW-2000电码化的97型25Hz相敏轨道区段。一旦出现调整不及时,不仅延长了维修、施工的要点时间,而且严重地影响了铁路运输作业。因此,正确掌握调整方法十分重要。下面介绍一点经验。  相似文献   

13.
车站轨道电路移频电码化微机辅助设计的研究   总被引:1,自引:0,他引:1  
移频电码化电路是6502电气集中工程设计重要组成部分,由于人工设计工作量大,速度慢,精度低,因而利用计算机技术,开发了该电路的软件设计系统.详细介绍半自动闭塞区段车站轨道电路移频电码化微机辅助设计的原理、设计成果和实际应用情况.  相似文献   

14.
结合参与设计的项目,对站内电码化设计中的股道有分割和有中岔等特殊情况进行了举例分析,对电码化设计过程中的典型发码电路、传输电路和编码电路进行了总结。  相似文献   

15.
残压是交流连续式轨道电路分路状态下的一项重要参数,它直接反映了轨道电路保证行车安全的程度。由于其测试繁琐,特别是站内移频电码化轨道区段在分路状态下,随着传输继电器CJ的脉动,交流连续式轨道电路与移频轨道电路交替转换,给残压测试带来了很大的困难,若不及时测试发现残压高的轨道区段并加以处理,将给设备安全带来极大的隐患。  相似文献   

16.
近年来,ZPW-2000A电码化已经成为站内轨道电路区段电码化的主要制式。一般情况下,站内正线采用预叠加发码方式,即列车占用本区段后,本区段及前方区段均进入发码状态,这种方式有效解决了列车运行过程中因发码电路应变时间延迟造成的瞬间掉码问题。  相似文献   

17.
二线制97型25Hz相敏轨道电路叠加MPB-2000G电码化(未形成闭环),是基于ZPW-2000A轨道电路技术规范,适用于半自动闭塞区段电气化车站的电码化系统,已在非提速区段大量投入使用。由于现场维修缺少各种技术数据,维修单位对电码化轨道电路的调整与测试认识不清,因此给设备安全运用留下了隐患。  相似文献   

18.
站内电码化电路的常用发码方式有2种:一种是"叠加"发码,即在轨道电路传输通道内,轨道电路信息和机车信号信息同时存在,发码设备与轨道电路设备并联,两者同时向轨道传输通道发送信息;另一种是"预叠加"发码,"预"就是在列车占用某一区段时,在本区段发码的同时,相邻的下一个区段也发码.这2种发码方式在电路设计上都能够满足列车运行的需要,但有时因设计只考虑到车站的通过进路发码,而忽略了平行进路的发码,使得发码电路的防护区范围过大,造成机车接收不到运行信息的情况,不但给行车安全造成了不利因素,而且严重制约了车站的作业效率.通过分析一起实际运用中电码化电路发生的故障,找出解决问题的方法,保证机车连续接收运行信息,确保行车安全.  相似文献   

19.
结合南京电务段新上的ZPW2000A站内电码化预发码设备,以非电化区段25Hz相敏轨道电路预叠加ZPW-2000A电码化为例,谈谈有关站内正线电码化机车信号掉码原因及处理。  相似文献   

20.
25 Hz相敏轨道电路预叠加UM71站内电码化   总被引:1,自引:1,他引:0  
随着铁路几次大的提速,站内电码化技术作为保证行车安全的基础设备已被广泛采用.介绍电码化方式的分类和预叠加电码化原理,分析接发车进路预叠加电码化电路,对电化区段25 Hz相敏轨道电路预叠加UM71电码化的安全性及可靠性进行了阐述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号