首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为保证速度200km/h及以上列车安全平稳运行,高速铁路增加轨道30m弦和300m弦中长波平顺指标。传统手工检测已无法满足该要求,需依靠高精度测量设备采集轨道坐标高程以控制轨道中长波不平顺。某进口高速铁路轨道检测设备将矢距差法模型计算的轨向高低不平顺作为不变量,结合调整量较差控制中长波轨向高低。受检测起点位置影响,矢距差法模型计算结果表现出显著随机性,忽略基准弦端点变化会产生模型误差。实测数据显示:采用这种模型,轨道调整后不平顺指标超限率达18.9%;若验收高速铁路线路,测量成果精度的提高可能无法有效控制轨道不平顺。因此,提出高密度四点偏差约束轨道方向高低模型,以提高矢距差法模型的检测精度。实测数据检验结果表明,模型不仅能够使任意位置中长波轨向高低满足检验要求,而且能获得最优扣件调整量。  相似文献   

2.
邓川 《铁道建筑》2014,(4):125-128
基于高速铁路轨道平顺性验收标准和方法,对与轨道平顺性有关的测量误差进行了理论分析和精度估算。理论分析指出CPⅢ点间的相对精度、全站仪自由设站误差及极坐标测量误差是影响轨道平顺性的主要因素。精度估算表明:采用标称精度不低于1″、1 mm+2×10-6×D(D为测距边长,km)的全站仪,能够完全满足中线偏差、高程偏差和300 m弦长的轨向、高低平顺性检测的精度要求;0.5″级全站仪能够满足30 m弦长的轨向、高低平顺性检测的精度要求,而1″级全站仪无法达到相应的核算精度,建议限制观测距离或重复观测以提高数据的可靠性。  相似文献   

3.
高速铁路高低和轨向不平顺直接影响列车运行安全性和舒适性。从高速铁路有砟轨道平顺性检测内容、影响轨道平顺性的主要指标和根据TQI值确定线路综合维修任务方面论述确定高速铁路有砟轨道不平顺区段;针对线路平纵断面偏差数据采集,从测量设站原则、设站精度要求和数据采集间隔要求方面进行阐述;从平纵断面优化原理、平纵断面起拨道量计算、实测数据优化处理和确定维修作业数据方面分析起拨道量数据优化处理,并对现场实际应用的作业条件、作业数据和作业效果进行分析。  相似文献   

4.
以成渝铁路资阳沱江多线特大桥(主跨为(90+180+90)m连续梁拱)为例,对高速铁路无砟轨道大跨度桥梁轨道不平顺性进行分析。对梁体变形、动力学进行理论计算后,对轨面高程在最不利温度荷载组合作用下静态高低不平顺进行检算,得出影响轨道不平顺性的主要因素;并采用光电传感、应力应变检测等技术手段,结合有限元计算对轨道不平顺性进行分析。在静态荷载与动态实测数据对比分析的基础上,提出山区高速铁路桥梁轨道不平顺性的注意问题和解决办法,对我国山区高速铁路建设和安全服役性能具有理论意义和工程价值,对建立健全高速铁路无砟轨道大跨度桥梁设计标准、轨道养护规程具有借鉴意义。  相似文献   

5.
武广(武汉—广州)高速铁路运营多年,轨道几何波形及幅值发生较大变化,影响列车高速运行的安全性和舒适性。针对这一问题,本文基于武广高速铁路轨道几何动态检测历史数据,采用谱分析方法对轨道几何幅频特性进行分析,研究了轨道几何周期性特征及幅频演变规律。结果表明:武广高速铁路高低存在简支梁徐变上拱变形引起的波长32 m周期不平顺,轨向存在钢轨焊接不良引起的波长100 m周期不平顺;隧道内轨道平顺状态优于路基和桥梁区段;直线和曲线区段的轨道平顺状态没有明显差异;高低谱随时间呈增大趋势;开通运营5年后桥梁徐变上拱发展速率变慢;轨向谱幅频随时间无显著变化;轨道精调能显著改善轨道平顺状态。  相似文献   

6.
轨道不平顺谱是表征轨道不平顺幅频特性的有效工具。目前,高速铁路轨道不平顺谱的研究主要聚焦在波长2 m及以上成分,甚少涉及轨面短波不平顺谱。基于大量无砟轨道高速铁路实测数据,研究轨面短波不平顺谱的表达函数及其与中长波轨道不平顺谱衔接的适应性。结果表明:两段幂函数能够很好地表征轨面短波不平顺谱。采用对数坐标系下的5阶多项式拟合全波段高低不平顺谱,实现中长波和短波成分在波长1~2 m范围内的平缓过渡。实测数据表明高速行车条件下,短波高低不平顺对轮轨垂向力及轴箱、构架和车体垂向加速度等指标均存在显著影响,全波段高低不平顺谱的建立对轮轨振动仿真分析、车辆和轨道结构设计以及轨道状态评估具有重要意义。  相似文献   

7.
随着高速铁路不断发展,400 km/h及以上高速铁路已成为铁路科技创新的重大需求,在更高速度运行条件下将面临着一系列车线动力学问题。为探讨更高速度条件下高速铁路线路长波不平顺敏感波长及线路平顺性管理控制问题,基于车线动力学理论,针对某一高速铁路车型,分别就高低不平顺对车体垂向加速度的影响、轨向不平顺对车体横向加速度的影响进行相干性分析与功率谱密度分析,得到了300~400 km/h速度条件下车体长波不平顺敏感波长;通过轨道静态中点弦实现了对特定速度条件下敏感波长的有效控制并提出对应的中点弦控制标准。综合对比发现:此高速动车组列车在300~400 km/h速度条件下,高低不平顺敏感波长范围为114~147 m,轨向不平顺敏感波长范围为60~79 m;线路长波不平顺对轮轨作用力影响较小,对车体振动加速度影响显著,可以通过静态中点弦测量管理有效控制轨道不平顺敏感波长;在400 km/h速度条件下,高低不平顺推荐采用80 m中点弦进行控制,Ⅰ,Ⅱ和Ⅲ级矢高管理建议值分别为5,11和17 mm;轨向不平顺推荐采用60 m中点弦进行控制,Ⅰ,Ⅱ和Ⅲ级矢高管理建议值分别为4,6和10 mm;在实际线...  相似文献   

8.
目的:为了对列车运行的平稳性、安全性、舒适性以及环境振动噪声进行更好的控制,亟需展开针对成都地铁线路进行轨道不平顺谱的分析研究。方法:采用轨检车对成都地铁7号线轨道弹性变形和永久变形的叠加状态进行动态检测,测试项目主要包括左右轨的高低不平顺、轨向不平顺、水平不平顺及轨距不平顺等。然后采用目前最常用的功率谱密度估计方法——Welch法(改进的周期图法)进行功率谱密度计算,得到统计期内被测轨道的长波高低不平顺谱、轨向不平顺谱、轨距不平顺谱及水平不平顺谱,并对计算结果进行分析,总结出成都地铁7号线轨道不平顺谱的频率特性,并与国内外典型轨道谱进行对比。基于非线性最小二乘法,采用中国三大干线谱公式对成都地铁7号线轨道谱进行曲线拟合。结果及结论:轨道板板缝会影响轨道的长波不平顺;成都地铁7号线轨道不平顺谱均存在空间频率为0.04 m-1整数倍的窄带谱峰,该空间频率与无缝钢轨相邻2个焊缝间的线路长度吻合,焊缝不平顺已经成为了严重影响轨道状态以及列车运行的问题;成都地铁7号线轨道的平顺性优于美国、德国以及我国的普速铁路(尤其是波长大于19 m的长波频段),但不如我国的高速铁路无砟...  相似文献   

9.
研究目的:为研究温度作用下大跨度拱桥轨道静态平顺性,以及轨道温度变形对行车动力响应的影响,以目前世界最大跨度的钢箱提篮拱桥南广高速铁路西江桥为研究对象,基于梁轨相互作用模型计算温度变形下轨道静态高低不平顺校核值,并与轨道静态不平顺验收指标进行对比;将温度作用引起的轨道变形叠加到轨道不平顺样本中,利用自主开发的TRBF-DYNA软件开展高速铁路大跨度拱桥车-桥耦合振动及列车走行性分析。研究结论:(1)温度作用下桥面会发生较大竖向变形,导致钢轨变形300 m弦长高低不平顺指标超过轨道静态验收标准;(2)考虑温度变形后,桥梁动力响应及列车行车安全性指标和乘坐舒适度指标变化幅度不大,且均满足现行规范要求;(3)建议大跨度桥梁轨道变形静态验收时,以竖曲线半径指标替代300 m弦长验收指标,并辅以车桥耦合动力响应分析进行综合判断;(4)本研究成果可为完善大跨度桥上轨道变形验收指标提供参考。  相似文献   

10.
研究目的:高速铁路桥梁竖向变形会引起轨道不平顺,进而影响高速铁路安全高效运营。以32 m高速铁路简支梁桥为研究对象,基于已有的桥梁竖向变形与轨面几何形态的映射解析模型,定量化研究了多种桥梁竖向变形模式的变形幅值、梁端悬出长度及砂浆层竖向刚度等关键参数对CRTSⅠ型板式无砟轨道结构轨面平顺性的影响,提出了控制钢轨变形的措施,为综合治理高速铁路桥梁钢轨变形提供理论参考。研究结论:(1)桥墩沉降、梁端竖向转角和梁体错台均会导致钢轨跟随梁体变形,并在变形区域边界上出现钢轨上翘;(2)钢轨变形量与桥梁竖向变形幅值呈正比,控制钢轨变形的关键在于减小桥梁竖向变形;(3)通过适当减小梁端悬出长度和减小砂浆层竖向刚度等方式,可以达到控制轨面变形的目的;(4)本研究成果可为高速铁路桥梁钢轨竖向变形控制提供理论参考。  相似文献   

11.
混凝土基床是解决高寒地区高铁路基冻胀问题的有效手段,但随着环境温度的变化,混凝土基床形变会对轨道平顺性产生不利影响。在某新建高速铁路约400 m长的混凝土基床路基段开展了为期一年的轨道平顺性监测,记录不同环境温度下的轨道平顺性状态。数据分析表明:轨道轨向变化量处于-0. 3~0. 4 mm之间,且90%以上处于±0. 2 mm以内;轨道高低变化量处于±1. 9 mm之间,且变化量绝对值大于0. 5 mm的比例为60. 5%。因此,混凝土基床温度形变主要对轨道高低产生影响。随着一年四季环境温度的周而复始,轨道高低呈现温度升高时变形幅度增大、温度降低时回落的周期性变化,在线路里程方向以11. 3 m的设计长度为周期呈正弦变化。结合上述轨道高低的变化规律,提出2~10℃是较为适宜的长轨精调温度区间,便于控制轨道高低的变化幅度,保证全年轨道质量指数均衡。  相似文献   

12.
CRTSⅢ型板式无砟轨道采用单元分块式结构,已成为我国300 km/h及以上高速铁路主要轨道结构形式。无砟轨道几何形位是保障列车运营舒适性的关键。为对CRTSⅢ型板式无砟轨道全过程实现几何形位控制,为列车提供高速、稳定、舒适的运营条件,在设计、制造、施工3方面进行研究。在设计阶段采用布板软件实现纵向、平面布板方案智能生成;在制造阶段依据轨道板生产流程,研发了配套的模具、工装、软件,实施自动化测量、自动化管控,以信息化手段保障轨道板承轨台制造精度;在施工阶段采用施工控制软件动态修正轨道板几何形位、实施无砟道床分层控制,可有效提升高速铁路线路平顺性。该技术先后应用于昌赣、商合杭、合安等高速铁路,在无砟道床结构控制、精调平顺指标控制等方面起到了决定性作用。  相似文献   

13.
为研究温度梯度荷载对高速铁路大跨度连续梁桥上CRTSⅠ型双块式无砟轨道的影响,基于梁-板-轨相互作用原理建立无缝线路计算模型,分析了轨道板竖向温梯荷载和阴阳面横向温梯荷载作用下轨道结构的力学特性,并采用隔枕校核值研究了两种荷载对高低和轨向静态不平顺的影响.研究结果表明:轨道板竖向温梯荷载对钢轨垂向位移和中长波高低不平顺...  相似文献   

14.
研究目的:轨道不平顺引起的列车振动和轮轨相互作用力随着列车速度的提高成倍增大。对车辆-轨道-桥梁耦合振动而言,桥梁变形和轨道不平顺相互叠加形成轨面位移,因而轨道不平顺对系统动力响应的影响更加显著。本文针对轨道不平顺对客运专线高架轨道结构振动特性的影响进行研究,分析三种实测中长波轨道不平顺状态,即路基有砟轨道不平顺、桥上有砟轨道不平顺以及隧道无砟轨道不平顺对高架轨道结构振动响应产生的影响。研究结论:(1)在相同运营条件、相同养护条件下,不同轨道结构的不平顺状态对轮轨冲击作用力、钢轨振动加速度、轨道板振动加速度的影响不同,但对桥梁振动加速度的影响较小;(2)在客运专线轨道中长波不平顺激励下,钢轨振动频率主要分布在20~250 Hz范围内,轨道板、桥面板垂向振动频率分布在20~150 Hz范围内,轨面不平顺度的波长成分是影响轨道结构振动频率分布特性的一个主要因素;轮轨力、钢轨振动加速度、轨道板振动加速度受随机不平顺的短波长成分的影响显著;(3)除了轨道结构类型的影响,轨道不平顺功率谱大小与波长特性对轮轨力、钢轨振动加速度、轨道板振动加速度也产生了显著的影响,建议在进行轨道不平顺控制时将轨道不平顺谱纳入高速铁路客运专线轨道质量的评价指标当中;(4)本研究成果对加深认识我国高速铁路轨道不平顺对高架轨道结构振动特性的影响具有一定的理论意义和实用价值。  相似文献   

15.
基于动力学理论并利用多体动力学仿真软件UM建立30 t轴重重载车辆-轨道空间耦合模型,分析高低/轨向复合不平顺波长、幅值对重载车辆动力性能的影响,确定最不利波长并提出高低/轨向复合不平顺幅值管理建议值。研究结果表明:(1)高低/轨向复合不平顺的最不利波长为10 m,波长大于40 m后,波长对动力性能影响较小;(2)高低/轨向复合不平顺中的高低不平顺成分幅值变化对轮重减载率、车体垂向加速度等指标影响显著,而轨向不平顺成分幅值变化对脱轨系数、轮重减载率、轮轨横向力、车体横向加速度等指标影响较大;(3)仅开行重载货车的线路,高低/轨向复合不平顺偏差限值I~Ⅳ级管理标准建议分别取为4 mm/5 mm、7 mm/8 mm、10 mm/10 mm、14 mm/13 mm。  相似文献   

16.
聚氨酯固化道床在施工中,材料聚合反应产生体积膨胀,导致轨道变形。由于固化道床施工是在轨道精调完成后进行,控制浇注施工中轨道变形,对于高速铁路轨道的平顺性尤为重要。采用热—力耦合模型对聚氨酯固化材料的膨胀行为进行模拟,并用膨胀力测试试验结果对热—力耦合模型中的关键参数进行标定。基于验证后的热—力耦合模型,针对大西高铁的实际线路情况,建立大西高铁路基基础聚氨酯固化道床膨胀力时变仿真模型,分析浇注方式、保压荷载幅值及作用点对轨道几何尺寸变化的影响。结果表明,聚氨酯固化道床单点浇注工艺必须采取保压措施,且建议作用点间距为1.2m、4点加载、荷载总量为30kN。现场施工时轨道变形测试结果表明,优化保压设备后,钢轨10m弦高低可控制在2mm以内,满足高速铁路轨道平顺性要求。  相似文献   

17.
结合贵广、沪昆、云桂等高速铁路无砟轨道长轨精调测量的实践,介绍全站仪轨检小车长轨精调数据采集及数据处理,惯导轨检小车的测量原理及提高轨道质量指数(TQI)的措施。在轨道精调作业中,先采用绝对测量模式消除长波不平顺性,然后采用相对测量模式提高短波轨向、高低、轨距等控制指标的精度。  相似文献   

18.
介绍试验速度350 km/h预设轨道不平顺区域实车试验工况,以及现场预设轨道不平顺区域的原则。实设轨道不平顺区域包括不同幅值、波长的高低、轨向、轨距、水平、三角坑、水平和轨向逆向复合、三波连续高低、三波连续轨向、交替轨向等。阐述轨道几何、地面动力性能、车辆动力学的测试内容和方法,对轨道几何、地面动力性能、车辆动力学随速度变化进行分析,得出轮轨动力性能和车辆动力响应与轨道不平顺、速度的关系,建议加强对水平轨向逆向复合不平顺的管理,加强对连续多波高低和轨向不平顺控制。  相似文献   

19.
为解决在市域铁路大跨度桥梁铺设无砟轨道的难题,以温州市域铁路 S3 线永宁大桥(140+200+260+140) m 为例,提出了市域铁路大跨度桥梁铺设无砟轨道竖向变形控制标准,建立了车-轨-桥耦合系统动力仿真模型, 并开展多种工况下桥梁、轨道动力响应分析。结果表明:桥梁挠跨比、竖向变形曲率半径、梁端转角、轨面平顺 性等指标均满足铺设无砟轨道技术要求;列车按设计速度通过永宁大桥时行车安全性和舒适性指标均满足要求; 对温度荷载作用下桥梁温度变形曲线进行评估,10 m 弦轨道高低不平顺满足规范要求。研究成果可为市域铁路大 跨度桥梁铺设无砟轨道提供参考。  相似文献   

20.
高速铁路轨道精调依据300m、30m以及10m弦的长中波轨向和高低、轨距、轨距变化率、水平和扭曲等参数控制轨道不平顺。然而无砟轨道钢轨的扣件可调量有限,若完全按照轨道几何参数设计值要求获得的轨道横、竖向偏差进行轨道精调,会面临调整量超出扣件可调范围的困境。为此,提出在轨道精调算法中增加轨道扣件(剩余)可调量的约束条件,采用L1范数最优解算法进行轨道调整量优化,避免了调整方案受扣件限制难以实现的缺陷。在新的优化算法中,通过增加相邻点偏差较差以提高轨道空间线形的相对精度。通过实测数据检验,结果表明:扣件(剩余)可调量约束是优化调整方案中保证钢轨最优几何形位的必要条件;相邻点偏差较差约束可以有效弥补扣件可调量约束引起的轨道短波不平顺,进一步提高调整后轨道的平顺性。建议对扣件(剩余)可调量约束的限差值规范化处理,建立"扣件类型—调整量—剩余可调量"轨调体系。采用剩余可调量对扣件可调范围约束,并参与轨道平顺性控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号