首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 570 毫秒
1.
选取单侧承轨面中央翘曲量分别为-1.0~-0.5 mm,-0.5~0 mm,0~0.5 mm和0.5~1.0 mm的CRTSⅢ型双向先张法预应力混凝土轨道板各8块,分别在脱模后3,15,30,60,90,120,150,180 d进行轨道板平面度检测。结果表明:随着时间增长具有不同初始平面度轨道板的中部均呈上拱趋势;同一轨道板两侧承轨面中央翘曲量变化规律及量值基本相当;脱模30 d内单侧承轨面中央翘曲量增长较快,而后增长减缓,90 d左右趋于稳定;脱模3 d单侧承轨面中央翘曲量越小,轨道板平面度越快趋于稳定;相同条件下生产的各类轨道板从脱模3 d至180 d单侧承轨面中央翘曲量平均值增量基本相当。为便于轨道板和钢轨精调,建议水养前、后单侧承轨面中央翘曲量分别按-1.0~-0.5 mm,-1.0~0 mm控制。  相似文献   

2.
针对郑徐客专CRTSⅢ型先张轨道板翘曲变形现象,利用ABAQUS有限元仿真软件建立轨道板翘曲分析模型,从轨道板的结构设计(轨道板自身上下不对称)和生产工艺(预应力筋偏位、混凝土收缩、温度梯度、弹性模量不同、模具承轨台约束)两个方面进行了分析,研究了轨道板翘曲变形的原因(轨道板自身的上下不对称、预应力筋偏位、混凝土收缩以及弹性模量不同等因素综合导致轨道板翘曲,其中混凝土收缩是主要原因),从而给出了相应的控制措施(优化模具柔性支座质量、设置模具整体上移量、设置预拱度、洒水养护等措施),取得了良好的控制效果,以期为同类工程提供参考和借鉴。  相似文献   

3.
CRTSⅡ型无砟轨道轨道板模板的安装与调整技术   总被引:1,自引:1,他引:0  
CRTS Ⅱ型轨道板为有挡肩、单向先张预应力板,通过在高精度的钢制模型中浇筑混凝土,经过养护、脱模及自然存放后的混凝土预制毛坯板,然后利用数控磨床依据设计数据对轨道板承轨台进行精确打磨加工,实现高速铁路高精度、高平顺性的要求,毛坯板的制作精度(直线度为±0.3 mm)是保证打磨质量的前提,而模板的安装精度直接影响毛坯质量,以及轨道板打磨的质量和效率。  相似文献   

4.
王梦 《铁道建筑》2020,(4):51-54
针对个别线路CRTSⅢ型轨道板脱模时已存在上拱的问题,建立了轨道板-模板一体化分析模型,研究预应力施加、混凝土收缩等因素对预制轨道板平面度的影响规律。结果表明:预应力及其偏心、轨道板顶面和底面弹性模量差异、养护过程中温度梯度对预制轨道板平面度影响较小,底模承轨槽约束条件下的混凝土收缩是影响预制轨道板平面度的关键因素。轨道板预制过程中混凝土收缩控制试验表明,在保证模板精度条件下,养护过程中补水可显著减小预制轨道板平面度上拱幅值。  相似文献   

5.
复合轨道板为高速铁路CRTSⅢ型板式无砟轨道的核心部件。基于现场试验开展了复合轨道板自密实混凝土收缩应力、温度翘曲应力及复合轨道板动应力3方面的试验研究,以进一步了解复杂因素作用下复合轨道板的受力特性。研究表明:板下自密实混凝土龄期达到100 d时,其收缩变形趋势逐渐平缓,由约束引起的板下自密实混凝土收缩拉应力约0.7 MPa;研究提出了正温度梯度作用下复合轨道板温度翘曲应力的实用计算式,以及复合轨道板自密实混凝土纵向动拉应力实用计算式,可推算不同温度梯度及动车组作用下复合轨道板承受温度翘曲应力和动拉应力;综合分析表明,在自密实混凝土收缩、温度梯度、列车荷载等因素作用下,复合轨道板承受的静动态拉应力可达4 MPa,应力幅值较大,受力状态较为复杂。  相似文献   

6.
双向先张CRTSⅢ型轨道板为有挡肩设计,且轨道板在浇筑后无需打磨承轨槽的程序,承轨槽精度全部靠模具制造精度控制,需要轨道板模具具有很高的刚度和制造精度;先张预应力的施加又需要模具具有较高强度。缓和曲线段的轨道板生产时,还需要调整承轨台模具位置使线路曲线地段轨道板承轨槽空间位置符合超高和加宽要求。本文研究了先张CRTSⅢ型轨道板模具各配件加工制造和组装要点,并结合轨道板预制生产过程中的经验,研究了灌浆孔内模和张拉孔内模的优化改进方法。  相似文献   

7.
CRTS II型无砟轨道板在长期服役状态下,表面产生裂纹,其位置和方向多种多样。从现场调查情况可以看出,轨道板在承轨台邻近处横向裂纹尤为突出。运用图像处理技术和分形理论对轨道板横向裂纹扩展特性进行分析。计算分析表明:承轨台受荷载作用集中,邻近处轨道板易产生裂纹;轨道板内预应力钢筋边缘易产生先开裂现象,并且裂纹沿着预应力钢筋方向扩展;轨道板裂纹具有分形特征,分形维数随裂纹长度增长而增大,可以作为轨道板裂纹扩展的特征属性指标。  相似文献   

8.
为了研究轨道板板角离缝的形成原因及治理措施,选取一高速铁路CRTSⅠ型板式无砟轨道结构,对其砂浆变形、板面高程、轨道板不同部位温度等指标进行24 h连续测试,并对测试结果进行分析。结果表明:轨道板板面与板底温差的周期性变化是导致轨道板周期性变形的主要原因;轨道板板面高程随时间变化呈现大致规律的波动变化;相对板面中心,板角在夜间翘起明显,板角离缝宽度与离缝值在夜间同步增大;充填层CA砂浆横向和竖向变形遵循热胀冷缩规律,其变形量较小,不是板角离缝产生的主因;不同涂层对混凝土表面温度具有降低作用,可用于改善板角因温度翘曲而产生的离缝程度。  相似文献   

9.
采用一种直接拉伸法试验研究了水泥乳化沥青砂浆与支承层混凝土(C15)、底座板混凝土(C30)和轨道板蒸养混凝土(C55)的黏结强度及其影响因素。试验结果表明:砂浆配合比(用水量)对砂浆与轨道板蒸养混凝土、底座板混凝土及支承层混凝土的黏结强度影响很小;混凝土表面拉毛显著提高了黏结强度;板腔的润湿状态对砂浆充填层与混凝土的黏结力影响很大;黏结强度随龄期增加而增加,在7d龄期时已基本达到最大值。  相似文献   

10.
针对京沪高速铁路固镇轨道板场CRTSⅡ型轨道板承轨台打磨施工,从轨道板打磨、存放、运输、承轨台打磨数据应用、数控磨床操作技巧、70余种非标设备易损配件储备等关键工序的研究,总结了CRTSⅡ型轨道板成品板打磨生产技术。  相似文献   

11.
CRTSⅢ型板式无砟轨道作为一种新型的无砟轨道结构,在成灌铁路上已经成功铺设并正式运营。布板设计是CRTSⅢ型板式无砟轨道设计中的一个重要环节。文章详细介绍了CRTSⅢ型轨道板布板设计的工作内容、计算参数及布板原则,并对轨道板布板,承轨台调整量及轨顶中心三维坐标等计算方法做了详尽的阐述。  相似文献   

12.
正1CRTSⅡ型轨道板结构特点(1)CRTSⅡ型轨道板标准板长6450mm,宽2550mm,厚度200mm,每块板上设10组20个承轨台(见图1)。特殊和补偿板外形尺寸依据设计而定(数量极少)。(2)混凝土强度C55,每块板混凝土用量3.43m3,板重约8.6t。  相似文献   

13.
CRTSⅡ型板式无砟轨道结构层间早期离缝研究   总被引:4,自引:0,他引:4  
在不同气候条件下现场观测CA砂浆灌注施工时的轨道板温度,得到实测的轨道板温度梯度。建立轨道结构力学计算模型,计算轨道板在实测温度梯度作用下的温度翘曲变形及应力。研究表明:气温和太阳辐射是影响轨道板温度梯度的主要因素;板面温度对温度梯度起控制作用;CA砂浆水化热对温度梯度有一定影响;在1d中,轨道板正、负温度梯度的交替变化引起温度翘曲压、拉应力的交替变化,是产生轨道结构层间早期离缝的最主要原因。因此,在早期温度场控制中,可采用有效的隔热或保温措施控制轨道板板面温度,避免出现较大的轨道板温度梯度,导致产生较大的温度翘曲应力,并根据CA砂浆强度增长规律,尽量延长扣压装置和精调千斤顶的拆除时间,从而有效地减少轨道结构层间早期离缝。  相似文献   

14.
针对轨面不平顺对高架支承块轨道结构振动特性的影响进行现场试验,分别从时域和频域对比分析不同轨面不平顺状态下轨道结构的振动响应,重点考虑10~1 000 Hz频率范围内的振动.分析结果表明:轮轨冲击力和轨道结构振动加速度幅值随轨面不平顺幅值的增加而增大,同时也受到轨面不平顺类型和波长分布的影响;轨面不平顺引起的钢轨振动频率主要分布在50~1 000 Hz的范围内,承轨台、桥面板垂向振动频率分布在40~200 Hz的范围内,轨面不平顺的波长分布是影响轨道结构振动频率分布特性的主要因素之一;降低谐波型轨面不平顺幅值0.2mm,可以减小钢轨垂向振动水平14.1dB.建议将轨面不平顺谱加入轨道质量的评价指标中.  相似文献   

15.
无砟轨道早期病害是影响其长期服役寿命的重要因素。应用 CRTSⅡ型板式轨道有限元计算模型,对轨道板铺设过程中的受力特性进行了分析。计算结果表明,在轨道板起吊和精调过程中,其板面最大拉应力可能发生超过或接近混凝土抗拉强度的情况,将会引起横向裂纹;轨道板灌注 CA 砂浆层后,纵连前板角区域温度翘曲应力超过 CA 砂浆层抗压强度,容易出现离缝;轨道板纵连后温度翘曲应力则大为降低。加强起吊过程控制、调整精调千斤顶位置与及时进行轨道板纵连是控制CRTSⅡ型板式轨道早期病害的重要手段。  相似文献   

16.
无砟轨道轨道板温度测量与温度应力分析   总被引:4,自引:0,他引:4  
研究目的:针对秦沈线和遂渝线无砟轨道板存在的问题,对轨道板温度进行全天的测量,总结轨道板温度的变化规律,研究温度对轨道板的影响,根据温度测量结果,进行温度翘曲应力的仿真分析,为板式无砟轨道的结构设计提供参考.研究结论:通过对轨道板进行的温度测量,得出轨道板上表面和底面最高温度较当地最高气温分别高出16 ℃和3 ℃左右,轨道板上下表面的最大温差为10~13 ℃,轨道板侧面的温度梯度接近0.5 ℃/cm的线性变化.通过建立轨道板温度翘曲应力的计算分析模型,得出框架轨道板较普通轨道板发生更小的翘曲位移和翘曲应力;普通轨道板的最大翘曲位移为0.82 mm,框架轨道板为0.61 mm;普通轨道板的最大翘曲纵向应力为1.81 MPa,框架轨道板为1.51 MPa;普通轨道板的最大翘曲横向应力为0.75 MPa,框架轨道板为0.58 MPa.  相似文献   

17.
将轨道板承轨台依据设计线路数据打磨成高精度的与设计线型相吻合,并按铺设位置固定排列是Ⅱ型轨道板生产工艺的特点.详细地阐述了承轨台打磨工艺,磨床测量系统的外部检校,以及打磨过程中参数的改动等.  相似文献   

18.
为掌握CRTSⅢ型板式无砟轨道结构的温度场、受力和变形规律,在郑徐高铁跨京杭大运河徐州特大桥的CRTSⅢ型板式无砟轨道结构开展监测服役状态监测的基础上,对监测数据进行了统计分析,研究表明:(1)轨道板板中温度高于自密实混凝土层和底座板;(2)轨道板上半部分温度梯度较大,下半部分温度梯度较小;(3)连续梁跨中地段轨道板板端翘曲位移高于板中翘曲位移,板端最高翘曲位移为1.9mm。连续梁梁端地段轨道板板端翘曲位移与板中翘曲位移接近;(4)随着大气温度的升高,桥梁梁缝的相对位移值逐渐减小;(5)轨道板压应力、拉应力大小变化随着温度的升高和降低而相应发生变化。  相似文献   

19.
杨铭  韦伟 《铁道技术监督》2011,39(5):34-35,39
简述客运专线无砟轨道CRTSⅡ型轨道板施工技术的发展现状,介绍CRTSⅡ型轨道板预制主要施工工艺、技术要求和技术指标,包括模板清理与喷脱模剂,钢筋骨架的制作与安装,轨道板混凝土浇注、养护、放张及脱模存放,以及轨道板打磨等。  相似文献   

20.
为研究轨道板在温度作用下的变形和竖向温度场的变化规律,对轨道板板角、板中等多点位的竖向位移及温度进行了长期的统计分析。结果表明:轨道板在环境温度影响下整体翘曲位移变化呈现规律性,一天中在午间高温时所产生的中部上拱变形量大于晚间的凹形翘曲变形量,且边缘处的竖向变形最为明显;板面下20 mm深处和180 mm深处的温度变化存在3 h的相位差值;夏季时板面温度与环境温度呈非线性关联,而冬季时环境温度和板面温度呈现为线性关联;板的向下位移量大于板的向上位移量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号