首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Ridership estimation is a critical step in the planning of a new transit route or change in service. Very often, when a new transit route is introduced, the existing routes will be modified, vehicle capacities changed, or service headways adjusted. This has made ridership forecasts for the new, existing, and modified routes challenging. This paper proposes and demonstrates a procedure that forecasts the ridership of all transit routes along a corridor when a new bus rapid transit (BRT) service is introduced and existing regular bus services are adjusted. The procedure uses demographic data along the corridor, a recent origin–destination survey data, and new and existing transit service features as inputs. It consists of two stages of transit assignment. In the first stage, a transit assignment is performed with the existing transit demand on the proposed BRT and existing bus routes, so that adjustments to the existing bus services can be identified. This transit assignment is performed iteratively until there is no adjustment in transit services. In the second stage, the transit assignment is carried out with the new BRT and adjusted regular bus services, but incorporates a potential growth in ridership because of the new BRT service. The final outputs of the procedure are ridership for all routes and route segments, boarding and alighting volumes at all stops, and a stop‐by‐stop trip matrix. The proposed ridership estimation procedure is applicable to a new BRT route with and without competing regular bus routes and with BRT vehicles traveling in dedicated lanes or in mixed traffic. The application of the proposed procedure is demonstrated via a case study along the Alameda Corridor in El Paso, Texas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
Transportation planners and policy analysts require, for scenario testing, a detailed fuel consumption model of public transit operating in multimodal corridors. Although much effort has been devoted to the development of detailed methodology for estimating fuel consumption of automobile travel on freeways and arterials, the same is not the case for public transit. This paper presents methodology for the estimation of fuel consumption for bus operation on transitways/busways serving major travel corridors. Bus fuel consumption model is reported for standard and articulated buses. This model was adapted from an existing heavy vehicle fuel use model by incorporating the transitway design and bus operational characteristics.  相似文献   

4.
The objective of this research was to develop a simple transit ridership estimation model system for short-range planning. The main feature of the model system is that it exploits knowledge of transit link volumes which are obtained readily from on-off counts. Extensive use is made of default values for model parameters, taken directly from the transportation literature. The remaining parameters can be derived easily from generally available land-use and socioeconomic data. Expensive household surveys and time-consuming model calibrations are not required. A sequence of simple trip generation, trip distribution and modal split models generate trip-purpose specific transit trip tables, denoted as “trial” trip tables. These trip tables and observed transit link volumes are used in a linear programming model which serves as a correction mechanism. The gain in accuracy is achieved by using the ridership information contained in the transit link volumes. The corrected trip tables may be used in a pivot-point analysis to estimate changes in ridership and revenue. The results of a test application of the model system indicate that it can generate accurate ridership estimates when reliable transit link volumes are available from on-off counts, and when the trial transit trip tables as derived from the first three component models are reasonably accurate.  相似文献   

5.
Analytic models are developed for optimizing bus services with time dependence and elasticity in their demand characteristics. Some supply parameters, i.e. vehicle operating costs and speeds are also allowed to vary over time. The multiple period models presented here allow some of the optimized system characteristics (e.g. route structure) to be fized at values representing the best compromise over different time periods, while other characteristics (e.g. service headways) may be optimized within each period. In a numerical example the demand is assumed to fluctuate over a daily cycle (e.g. peak, offpeak and night), although the same models can also be used for other cyclical or noncyclical demand variations over any number of periods. Models are formulated and compared for four types of conditions, which include steady fixed demand, cyclical fixed demand, steady equilibrium demand and cyclical equilibrium demand. When fixed demand is assumed, the optimization objective is minimum total system cost, including operator cost and user cost, while operator profit and social welfare are the objective functions maximized for equilibrium demand. The major results consist of closed form solutions for the route spacings, headways, fares and costs for optimized feeder bus services under various demand conditions. A comparison of the optimization results for the four cases is also presented. When demand and bus operating characteristics are allowed to vary over time, the optimal functions are quite similar to those for steady demand and supply conditions. The optimality of a constant ratio between the headway and route spacing, which is found at all demand densities if demand is steady, is also maintained with a multi-period adjustment factor in cyclical demand cases, either exactly or with a relatively negligible approximation. These models may be used to analyze and optimize fairly complex feeder or radial bus systems whose demand and supply characteristics may vary arbitrarily over time.  相似文献   

6.
The problem of precise longitudinal control of vehicles so that they follow predetermined time-varying speeds and positions has been solved. To control vehicles to the required close headway of at least 0.5 sec, the control philosophy is different from but no less rigorous than that of railroad practice. The preferred control strategy is one that could be called an “asynchronous point follower.” Such a strategy requires no clock synchronization, is flexible in all unusual conditions, permits the maximum possible throughput, requires a minimum of maneuvering and uses a minimum of software. Since wayside zone controllers have in their memory exactly the same maneuver equations as the on-board computers, accurate safety monitoring is practical. The paper discusses the functions of vehicle control; the control of station, merge, and diverge zones; and central control.  相似文献   

7.
Current analytic models for optimizing urban bus transit systems tend to sacrifice geographic realism and detail in order to obtain their solutions. The models presented here shows how an optimization approach can be successful without oversimplifying spatial characteristics and demand patterns of urban areas and how a grid bus transit system in a heterogeneous urban environment with elastic demand is optimized. The demand distribution over the service region is discrete, which can realistically represent geographic variation. Optimal network characteristics (route and station spacings), operating headways and fare are found, which maximize the total operator profit and social welfare. Irregular service regions, many‐to‐many demand patterns, and vehicle capacity constraints are considered in a sequential optimization process. The numerical results show that at the optima the operator profit and social welfare functions are rather flat with respect to route spacing and headway, thus facilitating the tailoring of design variables to the actual street network and particular operating schedule without a substantial decrease in profit. The sensitivities of the design variables to some important exogenous factors are also presented.  相似文献   

8.
The safety of personal rapid transit systems involves careful attention to all features of the design such as the use of a hierarchy of fault-tolerant redundant control systems, bi-stable fail-safe switching, back-up power supplies, vehicle and passenger protection, and attention to the interaction of people with the system. Safety, together with reliability and adequate capacity, must be achieved while making the system economically attractive, hence techniques to achieve these goals at minimum life-cycle cost are primary in PRT design. Building on theory of safe, reliable, environmentally acceptable, and cost-effective design of PRT systems developed during the 1970′s, in 1981 the author and his colleagues initiated design of a new PRT system, now called Taxi 2000. The paper describes the relevant features of Taxi 2000 and principles of safe design incorporated into it.  相似文献   

9.
Bus rapid transit (BRT) is a popular strategy to increase transit attraction because of its high‐capacity, comfortable service, and fast travel speed with the exclusive right‐of‐way. Various engineering designs of right‐of‐way and the violation enforcement influence interactions between BRT and general traffic flows. An empirical assessment framework is proposed to investigate traffic congestion and lane‐changing patterns at one typical bottleneck along a BRT corridor. The BRT bottleneck consists of bus lane, BRT station, video enforcement zone, and transit signal priority intersection. We analyze oblique cumulative vehicle counts and oblique cumulative lane‐changing maneuvers extracted from videos. The cumulative vehicle counts method widely applied in revealing queueing dynamics at freeway bottlenecks is extended to an urban BRT corridor. In the study site, we assume four lane‐changing patterns, three of which are verified by the empirical measurements. Investigations of interactions between buses and general traffic show that abnormal behaviors (such as lane violations and slow moving of the general traffic) induce 16% reduction in the saturation rate of general traffic and 17% increase in bus travel time. Further observations show that the BRT station and its induced increasing lane‐changing maneuvers increase the downstream queue discharge flows of general traffic. The empirical results also contribute to more efficient strategies of BRT planning and operations, such as alternative enforcement methods, various lane separation types, and optimized traffic operations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Bus rapid transit systems: a comparative assessment   总被引:1,自引:0,他引:1  
There is renewed interest in many developing and developed countries in finding ways of providing efficient and effective public transport that does not come with a high price tag. An increasing number of nations are asking the question—what type of public transport system can deliver value for money? Although light rail has often been promoted as a popular ‘solution’, there has been progressively emerging an attractive alternative in the form of bus rapid transit (BRT). BRT is a system operating on its own right-of-way either as a full BRT with high quality interchanges, integrated smart card fare payment and efficient throughput of passengers alighting and boarding at bus stations; or as a system with some amount of dedicated right-of-way (light BRT) and lesser integration of service and fares. The notion that buses essentially operate in a constrained service environment under a mixed traffic regime and that trains have privileged dedicated right-of-way, is no longer the only sustainable and valid proposition. This paper evaluates the status of 44 BRT systems in operation throughout the world as a way of identifying the capability of moving substantial numbers of passengers, using infrastructure whose costs overall and per kilometre are extremely attractive. When ongoing lifecycle costs (operations and maintenance) are taken into account, the costs of providing high capacity integrated BRT systems are an attractive option in many contexts.  相似文献   

11.
This paper draws from the findings of published empirical studies and observations of the impacts of rapid transit systems on urban development. Analysis is based on comparisons of impact findings by different researchers and for different cities. An initial set of key issues is proposed, against which available information is arrayed and compared. It is concluded that rapid transit can have substantial growth-focusing impacts, but only if other supporting factors are present.  相似文献   

12.
This note derives an equation for the ratio of the maximum possible station flow to average line flow in a personal rapid transit or dual-mode system using fully synchronous control. It is shown that such a system is impractical except in very small networks.  相似文献   

13.
Conventional and flexible bus services may be combined to better serve regions with a wide range of characteristics. If demand densities and resulting service frequencies are low, the coordination of bus arrivals at transfer stations may significantly reduce passenger transfer times. A method is proposed for integrating, coordinating, and optimizing bus services while considering many‐to‐many travel patterns, demand elasticity, financial constraints, and appropriate service type for various regions. The objective is to maximize welfare, that is, the sum of producer and consumer surplus. The problem is solved with a hybrid optimization method, in which a genetic algorithm with bounded integer variables is selected for solving one of the subproblems. The service types, fares, headways, and service zone sizes are jointly optimized. Sensitivity analyses explore how the choice among conventional and flexible busses depends on the demand, subsidy, and demand elasticity parameters. The results also show that welfare can increase due to coordination, and these increases are found to be higher in cases with high demand or low subsidy. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Abstract

In 2004, one of the biggest ferry operators in Norway was found guilty of having intentionally attempted to defraud the state of about 113 million Norwegian kroner in subsidies by underreporting revenues and overstating costs during the period 1992–2002. The company and five of the top managers were convicted and the case was regarded as one of the most serious subsidy offences ever committed in Norway. The aim of this article is to show that standardized revenue and cost norm models from the state can deter operators from committing such offences and when relevant detecting the fraud attempts at an early stage. Our model suggests that the operator in question overstated costs by about 19% and that the actual subsidy fraud attempt was about three times higher than concluded by the Court.  相似文献   

15.
A comprehensive method for calculating and measuring Dependability of Personal Rapid Transit systems is derived and compared with the more common measure called Availability. Availability is the percentage of all revenue trips that are completed without interruption. It does not take into account the duration of delays of the passengers because of the diffiiculty of gathering the necessary information in conventional transit systems. In PRT systems, vehicle-hours of travel and of delay relate in a statistically simple way to person-hours of travel and of delay. Therefore, in such systems, it is practical to use the performance measure called Dependability that takes into account the inconveince of people as a result of delays. To form a bridge to present practice, it is recommended that both measures be calculated and compared in forthcoming PRT systems. With today's computer systems, this is easily accomplished.  相似文献   

16.
This paper describes the main criteria used to design rapid transit alignments. It also shows how Operational Research tools can assist the design process.  相似文献   

17.
In December 1972 an earthquake hit Managua, Nicaragua, killing 5,000 inhabitants, while wounding 20,000 persons and destroying its core area of 13 square kilometers. The earthquake also seriously disrupted the bus transit system. Bus transit patronage fell as a result of the loss of population of 144,000 persons who moved temporarily out of the city, while costs rose appreciably as both round trip bus distances and the proportion of the trips on unpaved roads doubled with respect to pre-earthquake levels. By September 1973, ten of the thirteen bus companies were on the verge of bankruptcy and were demanding from the regulatory body stiff increases in fares.This paper presents analyses and recommendations for improving the short-term efficiency of bus routes in Managua by applying planning techniques suited to the data availability problems of developing countries.In view of the lack of cost data for the bus routes, a cost analysis was conducted; Jan de Weille's cost factors were adapted to Nicaragua to portray the near bankrupt condition of most routes. These cost factors were verified by means of selected interviews with the private transit entrepreneurs.Next, a simple patronage prediction model was developed which related patronage for a route to the population and employment served by the route. This simple patronage model was then applied to redesign the bus routes of Managua. A policy of bus route redesign coupled with the paving of city streets along the bus routes is shown to have sufficed in avoiding fare increases. Finally, the paper reviews the bus transit regulatory setting and develops some recommendations for its improvement.Adjunct Associate Professor of the Catholic University of America. This study was conducted while the author was stationed in Nicaragua as a consultant to Harvard Development Advisory Service.  相似文献   

18.
Bus rapid transit system is designed to provide high‐quality and cost‐efficient passenger transportation services. In order to achieve this design objective, effective scheduling strategies are required. This research aims at improving the operation efficiency and service quality of a BRT system through integrated optimization of its service headways and stop‐skipping strategy. Based on cost analysis for both passengers and operation agencies, an optimization model is established. A genetic algorithms based algorithm and an application‐oriented solution method are developed. Beijing BRT Line 2 has been chosen as a case study, and the effectiveness of the optimal headways with stop‐skipping services under different demand levels has been analyzed. The results has shown that, at a certain demand level, the proposed operating strategy can be most advantageous for passengers with an accepted increase of operating costs, under which the optimum headway is between 3.5 and 5.5 min for stop‐skipping services during the morning peak hour depending on the demand with the provision of stop‐skipping services. The effectiveness of the optimal headways with stop‐skipping services is compared with those of existing headways and optimal headways without stop‐skipping services. The results show that operating strategies under the optimal headways with stop‐skipping services outperforms the other two operating strategies with respect to total costs and in‐vehicle time for passengers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A psychological scaling technique, magnitude estimation, is used to rate time spent on various elements of bus transit trips. Relative values of time are found for in-vehicle portions of trips, walking, waiting and transferring. Because magnitude estimation produces a ratio scale, results can be directly incorporated into modal choice analyses, route planning and evaluation procedures where monetary values of time are not necessarily required.  相似文献   

20.
Travel by a Personal Rapid Transit (PRT) system may be much more energy efficient than travel by conventional road transport. The difference could be so large that the energy invested in the PRT infrastructure may be equivalent to the fuel that is saved by previous car and bus riders in less than five years. We analyzed the propulsion energy requirements of a PRT system and made a first-order calculation of the energy cost of the infrastructure and maintenance. Operation of the PRT requires only half the energy required by buses and a quarter of the energy used by passenger cars per passenger kilometer. The energy used to build the PRT infrastructure in a city may be recovered in five years if 10% of the car drivers switch to the PRT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号