首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
文章为探究不同因素对热拌再生沥青混合料路用性能的影响及影响程度,选择再生剂掺量、RAP掺量、级配及油石比作为自变量,以动稳定度、构造深度为响应变量,利用正交试验设计进行四因素三水平试验,对每组试验数据进行分析,选择最佳水平组合,并进行常规路用性能试验验证。结果表明:对高温性能影响大小依次为RAP掺量>级配>再生剂掺量>油石比;对抗滑性能影响大小依次为RAP掺量>级配>再生剂掺量>油石比;利用极差、方差、灰关联分析得出响应变量综合最佳因素组合水平为A1B3C3D1,即再生剂掺量为2%、RAP掺量为40%、级配为3#、油石比为4.4%,并对该水平进行了常规路用性能验证,结果均满足技术要求。  相似文献   

2.
文章中作者选用两种温拌沥青混合料添加剂进行室内试验,与同级配热拌沥青混合料进行对比。结果表明,两种温拌剂均可降低沥青混合料生产温度,同时高温稳定性、水稳定性基本与热拌沥青混合料相当。  相似文献   

3.
为对冷拌冷铺沥青混合料的路用性能进行研究,文章以冻融循环试验以及浸水车辙试验的方式分别对两种沥青混合料进行研究,并通过试验结果分析影响冷拌冷铺沥青混合料抗水损害性能的因素.  相似文献   

4.
温拌再生沥青混合料是一种新型的节能环保路用材料,但其水稳性能不良严重影响其推广与应用。文章采用转移率试验、红外光谱试验分析活化剂对混合料新旧沥青界面的宏观作用效果及其微观作用机理;同时通过冻融劈裂试验研究活化剂对温拌再生沥青混合料水稳性的影响。研究结果表明:与未添加活化剂相比,添加0.1%活化剂的RAP旧沥青转移率由19.73%提高至48.33%;红外光谱分析表明活化剂与旧沥青发生了加成缩合等化学反应;与普通温拌再生沥青混合料相比,添加0.1%活化剂的温拌再生沥青混合料冻融劈裂强度比明显增大,TSR值由59.55%上升至89.75%,进一步表明活化剂对温拌再生沥青混合料水稳性有明显的改善作用。  相似文献   

5.
沥青路面改扩建面临着沥青面层混凝土的破碎、拆除,将其进行再生利用可实现可持续发展。文章以柳南高速公路改扩建工程中产生的铣刨料为研究对象,采用泡沫沥青进行综合再生利用,铣刨料掺量分别为0%、10%、20%、30%、40%、50%,研究了泡沫再生沥青混合料的高温稳定性、水稳定性、低温抗裂性等路用性能,并对各指标进行归一化赋值处理,推荐再生掺量应控制在20%~30%之间,为其他高等级道路改扩建中路面材料的再利用提供经验参考。  相似文献   

6.
基于低温弯曲蠕变试验,就温拌剂和阻燃剂对沥青混合料低温性能的影响进行了研究。对Burgers模型参数的分析表明,阻燃剂和温拌剂对沥青混合料的低温性能具有明显的降低作用。应力松弛时间、蠕变速率、蠕变速率与劲度模量比三个参数对低温性能的描述效果是不同的,分析认为用蠕变速率与劲度模量比反映低温性能是最为准确的。  相似文献   

7.
文章根据AC-13、AC-20的材料组成,选用合理的RAP掺配方案和掺配方法进行试件成型,并通过冻融劈裂强度、应变能密度和车辙试验,研究不同RAP掺量下温拌再生沥青混合料的水稳定性、低温性能和高温稳定性。结果表明:温拌再生沥青混合料的冻融破裂强度比大于热再生沥青混合料,随着RAP掺量增加,温拌再生沥青混合料的水稳定性先增后降,RAP掺量为40%时冻融破裂强度比达到最大值;温拌再生沥青混合料的低温性能与普通沥青混合料大体处于同一水平;随着RAP掺量增加,温拌再生沥青混合料的高温稳定性能得到提高。  相似文献   

8.
为探究不同因素对温拌再生SMA沥青混合料疲劳寿命的影响,文章采取应变控制四点弯曲疲劳寿命试验,分析RAP掺量(0%、20%、30%)、拌合方式以及温拌工艺(干拌法湿拌法)等三种因素对混合料疲劳性能的影响。  相似文献   

9.
为研究不同因素(RAP掺量、压实温度、温拌剂掺量)对温拌再生沥青混合料性能的影响,设计3种RAP掺量(0、20%、40%),压实温度(100℃、120℃、140℃),温拌剂掺量(0、2%、4%)的正交试验,采用极差、方差分析法计算了不同因素对再生沥青混合料性能的影响程度,分析了影响因素与性能指标之间的显著性。结果表明:压实温度对再生沥青混合料空隙率影响较为显著,RAP掺量、温拌剂掺量影响程度次之;三种因素对再生沥青混合料的性能影响具有差异,应根据不同的控制目标确定因素水平;再生沥青混合料空隙率、劈裂抗拉强度受RAP掺量、压实温度、温拌剂掺量的影响更显著,稳定度与这些因素之间关系不显著。  相似文献   

10.
本文通过室内试验,研究福建省泉厦高速扩建工程沥青稳定碎石上基层使用的厂拌泡沫沥青冷再生混合料的抗车辙性能、温度敏感性与水稳定性,对冷再生混合料路用性能进行评价.  相似文献   

11.
为了评价温拌再生沥青混凝土的水稳定性,文章选取3种旧沥青混合料掺量(15%,30%和45%)、3种温拌剂用量(2%,3%和4%)和3种旧沥青混合料粒径组成(0~5mm,5~10mm和10~19mm),进行正交设计,通过冻融间接拉伸试验,按照方差分析方法和F检验法进行统计分析。试验结果表明:3种因素对TSR影响的主次顺序是温拌剂用量RAP掺量RAP组成。随着温拌剂掺量增加,水稳定性变差;同样随着RAP掺量增加,水稳定性越差;RAP颗粒组成对水稳定性无显著性影响。  相似文献   

12.
文章从沥青性能、混合料路用性能、环保性能等方面对温拌沥青混合料(WMA)与热拌沥青混合料(HMA)进行对比试验研究,结果表明:与HMA相比WMA可以降低拌和、成型温度约20℃~25℃,其路用性能满足技术规范要求,具有良好的环保性能。并结合工程实例,评述了温拌沥青混合料在公路隧道工程中的应用效果。  相似文献   

13.
为对比研究温拌与热拌再生剂对再生沥青及混合料的性能的影响,文章通过分析不同添加剂对老化沥青性能的恢复,开展室内试验探究了不同再生沥青对其混合料路用性能的影响规律。结果表明:新沥青的掺入对老化沥青性能恢复有显著的作用,温拌再生与热拌再生剂对老化沥青的针入度和软化点恢复效果相近,温拌再生剂可以更有效地恢复老化沥青的延度,同时使再生沥青的黏度低于新沥青;温拌再生剂更大程度地恢复了老化沥青的复数剪切模量,但导致了再生沥青黏弹性比例失调;温拌再生剂对沥青混合料的水稳定性改善高于热拌再生剂,但低温及高温性能略低于热拌再生剂。  相似文献   

14.
采用龙孚温拌剂和Sasobit温拌剂制备温拌改性沥青,将其应用于AC-16C沥青混合料,通过室内击实试验评价该温拌沥青混合料的最佳温拌剂掺量与最佳成型温度.结果 表明:温拌改性沥青混合料能够节能减排,具有良好的发展前景和应用意义.通过线性回归方程得出温拌沥青混合料在目标空隙率下的最佳成型温度和最佳温拌剂掺量,对温拌剂在...  相似文献   

15.
为解决河西地区大风大温差工况环境下石墨烯复合橡胶改性沥青黏度大、施工温度高、降温速率快等问题,本文基于半间断型Superpave-13结构与新型温拌技术,对常规与温拌石墨烯复合橡胶改性沥青及混合料路用性能进行试验研究,结果表明:添加0.5%DWMA-S(AR专用)温拌剂后,石墨烯复合橡胶改性沥青175℃运动黏度降低18.1%,25℃弹性恢复提高3.2%,老化前后5℃低温延度分别提高36.1%、10.8%,恒温30 min时软化点下降3.41%,恒温6 h时软化点恢复至99.4%;常规与温拌沥青混合料呈现出良好的高温抗变形、低温抗裂及水稳定性;温拌技术可以降低施工温度20℃,与常规沥青混合料160~165℃成型的马歇尔物理-力学指标相当,温拌沥青混合料的动稳定度及水稳定性略有降低,低温弯曲破坏应变提高7.2%,温拌剂对复合改性沥青及混合料路用性能影响规律基本一致。  相似文献   

16.
为了有效改善公路交通环境,阐述国内外温拌沥青混合料的研究和发展现状,分析温拌沥青混合料的微观机理,重点研究相变材料对温拌沥青混合料路用性能及微观机理的影响,并针对此提出一些有效对策,为相关部门提供参考,同时还可以为我国道路的设计与施工提供参考。  相似文献   

17.
文章依托广西某高速公路隧道路面工程,采用AC-20沥青混合料,通过集料加热水损失试验及变温击实试验,研究了温拌沥青混合料的施工温度,初步得出了温拌沥青混合料的施工温度建议值;并采用冻融劈裂试验和车辙试验对施工温度建议值进行了验证,提出了温拌沥青混合料在各施工阶段的建议施工控制温度。  相似文献   

18.
文章从温拌沥青混合料的作用机理、分类及优势入手,依托某试验路铺筑实例,阐述了温拌沥青混合料的拌和、运输、摊铺和碾压工艺流程及技术要点,并对铺筑的温拌沥青路面的各项质量控制指标进行了检测分析。  相似文献   

19.
为研究玻璃纤维对沥青混合料路用性能的影响,文章介绍了路用玻璃纤维的原料选择和表面改性工艺,并通过车辙试验、小梁低温弯曲试验、冻融劈裂试验,研究不同掺量下玻璃纤维对混合料高温稳定性、低温抗裂性、水稳定性的影响规律.结果表明:掺加玻璃纤维可以有效改善混合料的高温稳定性,但是随着掺量增加,改善作用存在上限;掺加玻璃纤维可以提...  相似文献   

20.
为实现回收沥青路面材料(RAP)高掺量、低温度条件下的再生利用,文章在RAP沥青及集料性能分析的基础上,利用3G温拌剂及芳烃油配制温再生剂,分析再生沥青黏温曲线特性及再生沥青混合料空隙率的变化情况,确定拌和、压实温度,对RAP掺量分别为50%、60%和70%的再生沥青混合料进行车辙试验、小梁弯曲试验及冻融劈裂试验,评价...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号