共查询到11条相似文献,搜索用时 46 毫秒
1.
为了合理匹配LQG控制无外界动力源主动悬架的蓄能器充气压力、最高工作压力与容积等参数, 以满足95.4%工作需求, 选取理想控制力标准差的2倍为主动悬架的最大输出力, 结合馈能/主动油缸参数确定蓄能器的理想工作压力; 以压力波动小于5%为目标, 确定蓄能器的充气压力和最高工作压力; 推导了悬架与蓄能器间的能量流动方程, 并在增加2kW负载条件下进行变容积参数的动态仿真, 确定蓄能器的容积。计算结果表明: 蓄能器理想工作压力为23.008MPa时, 悬架二次型性能指标仅较理想状态增大5.21%;蓄能器的充气压力、最高工作压力与容积分别为11.108、23.583MPa与2.5L, 此时LQG控制无外界动力源主动悬架稳定工作时蓄能器的最大压力波动为1.03%。可见蓄能器参数匹配结果同时满足无外界动力源主动悬架的低成本、高性能及高能量回收率的要求。 相似文献
2.
针对主动悬架减振性能和馈能特性在不同等级路面适应性较差的问题,建立了非线性电磁主动悬架模型; 考虑车辆在行驶过程中悬架簧上质量存在不确定性,提出了一种主动悬架自适应滑模控制器; 基于不同路面下悬架动力学响应数据,采用自适应模糊神经网络算法识别路面等级,确定控制器目标系数,实现了主动悬架安全性和舒适性之间的协调; 研究了电磁主动悬架馈能特性及其切换控制策略,在此基础上,考虑电磁主动悬架安全性、舒适性和节能性的矛盾关系,采用多目标粒子群优化(MOPSO),以悬架动力学性能和馈能特性为设计目标综合优化控制器和悬架结构参数,并通过模糊集理论对多目标优化后的Pareto解集进行最优解选取。研究结果表明:模糊神经网络对不同等级路面下非线性电磁主动悬架的最大识别误差能够控制在10%以内,满足识别准确性要求; 在C级路面条件下,优化后的主动悬架与传统被动悬架相比,簧上质量振动加速度减小了35.3%,轮胎动行程增大了7.7%,但可以控制在10%的安全范围内; 与原主动悬架相比,优化后悬架簧上质量振动加速度减小了10.5%,馈能效率增大了1.7%,优化后自适应滑模控制器能够更好地协调悬架馈能特性和减振特性; 建立的非线性电磁主动悬架模型可实现不同路面等级下悬架系统安全性、舒适性和节能性的综合最优。 相似文献
3.
为提高车辆行驶的主动安全性,引入分层控制思想。建立名义横摆角速度和名义质心侧偏角为输出的线性二自由度车辆模型。基于线性二次型调节器设计上层控制器,得到附加横摆力矩,采用差动制动原理,设计中层控制器对附加横摆力矩进行分配,根据中层控制器分配的附加横摆力矩计算滑移率增量,基于PID控制理论设计下层滑移率控制器,以控制车轮的制动压力;最后联合MATLAB/Simulink和CarSim进行鱼钩转向和双移线转向仿真试验。结果表明,采用分层控制能够有效地提高车辆行驶的主动制动稳定性。 相似文献
4.
为了提高汽车转向-侧倾运动的安全性, 设计了主动悬架侧倾运动安全LQG控制器; 建立了3自由度汽车转向-侧倾运动动力学模型, 选择横向载荷转移率、侧倾角及其加速度构建汽车侧倾安全综合性能评价指标; 为了解决现有设计方法无法跟踪系统干扰项(前轴转向角) 和控制加权矩阵行列式等于零带来的控制向量无法求解的难题, 将前轴转向角进行满足最小相位系统的微分变形, 并与原系统方程组成增广系统方程, 在综合性能评价指标中引入包含控制项的无穷小量, 以满足LQG控制器设计条件; 结合层次分析法和归一法, 以鱼钩工况为基础, 仿真获取汽车转向-侧倾运动统计数据, 进而确定LQG控制器的加权系数, 通过多工况数值仿真验证主动悬架侧倾运动安全LQG控制器的工作效果。仿真结果表明: 新设计的LQG控制器不干扰驾驶人的转向操纵; 与被动悬架相比, 在鱼钩工况、蛇形穿桩工况和双移线工况下, 采用LQG控制器的主动悬架可使汽车侧倾运动安全的主要评价指标即横向载荷转移率的方差分别降低了32.08%、32.82%、29.24%, 侧倾角的方差分别降低了47.74%、44.19%、63.41%, 侧倾角加速度的方差分别降低了87.30%、60.00%、86.39%, 说明采用新设计LQG控制器的主动悬架可大幅度改善汽车侧倾运动安全性, 且具有良好的转向工况适应性。 相似文献
5.
为保证一类具有参数不确定的铁道车辆横向能量回馈式主动悬挂系统的稳定性, 通过引入带有交叉乘积项的二次型调节器, 提出了一种鲁棒H∞控制器的设计方法, 并对含摄动的悬挂系统模型进行了鲁棒H∞控制器设计。分析了具有参数摄动的能量回馈式主动悬挂系统的能量平衡条件, 并在MATLAB/SIMULINK下, 对控制系统进行了仿真。仿真结果表明: 不确定闭环系统的结构奇异值峰值为0.867 5, 鲁棒H∞控制器使得能量回馈式主动悬挂系统鲁棒稳定; 车辆模型的共振频率增益降低了40 dB, 悬挂减振性能得到明显改善; 整个仿真过程回收能量为29.5 J, 系统达到了能量平衡。 相似文献
6.
A novel energy-regenerative active suspension for vehicles 总被引:1,自引:0,他引:1
7.
车辆主动悬挂最优预见控制模型 总被引:3,自引:1,他引:3
以复杂多自由度的车辆系统设计模型代替传统的简化模型, 建立了主动悬挂控制车辆系统模型, 设计了最优预见控制器, 研究了车体的浮沉、点头、侧滚3种运动状态在加控制和未加控制时的路面激扰响应。仿真计算结果表明在最优控制下车体的浮沉响应降低了27%, 点头响应降低了30%, 侧滚响应降低了30%;在预见控制二次加权矩阵的作用下, 车体的浮沉响应降低了54%, 点头响应降低了50%, 侧滚响应降低了45%;根据预见控制的提前预见可适时响应的特点, 系统可按设定目标预见步数提前作出响应, 由此验证了最优预见控制在复杂多自由度的车辆主动悬挂设计模型中应用的可行性和有效性。 相似文献
8.
为了减少车辆主动悬挂对外部能源的消耗, 设计了自供能量主动悬挂系统, 建立了车辆半车简化横向悬挂动力学模型, 设计了LQG控制器, 并利用随机振动理论分析了系统能量平衡存在的条件, 采用Matlab/Simulink对系统的运行效果进行了仿真。仿真分析结果表明: 自供能量主动悬挂系统比半主动和被动悬挂拥有更好的隔振效果, 且当直流电机作动器的等效阻尼系数大于规定值时, 系统在实现主动减振控制的同时还能够反馈能量。 相似文献
9.
为使半主动悬架在名义工况下获得尽可能优的使用性能, 保证在变参数/行驶工况下具有良好的鲁棒性, 提出一种车辆半主动悬架全息最优滑模控制器设计方法。基于车辆模型分析了现有最优滑模控制器不能使半主动悬架在名义工况下获得较优性能与在变参数/行驶工况下鲁棒性较差的原因。通过对半主动悬架控制系统状态方程进行扩展, 构建了不丢失任何系统结构与期望性能信息的滑模流形函数, 据此设计了半主动悬架全息最优滑模控制器。通过变参数多工况数值仿真对比了采用现有最优滑模控制器的半主动悬架、采用全息滑模控制器的半主动悬架与被动悬架的性能。分析结果表明: 在名义工况下, 采用全息最优滑模控制器的半主动悬架的综合性能较采用现有最优滑模控制器的半主动悬架与被动悬架的综合性能分别提高了88.30%、38.33%;在变参数工况下, 采用全息最优滑模控制器的半主动悬架、采用现有最优滑模控制器的半主动悬架和被动悬架的综合性能指标的最大波动分别是26.22%、74.42%、46.39%;在变行驶工况下, 采用全息最优滑模控制器的半主动悬架、采用现有最优滑模控制器的半主动悬架和被动悬架的综合性能指标的最大波动分别是78.55%、106.22%、115.06%。可见, 相比于被动悬架与采用现有最优滑模控制器的半主动悬架, 采用全息最优滑模控制器的半主动悬架可获得更好的名义工况使用性能与变工况鲁棒性。 相似文献
10.
为了满足长途运输时重型卡车行驶的平顺性要求,利用基于线性矩阵不等式(LMI)的H2控制算法对驾驶室安装了主动悬置的六自由度1/2重型卡车模型进行振动控制,所采用的路面激励为积分白噪声随机路面激励.大量的仿真结果显示,主动控制悬置系统明显降低了驾驶室的俯仰角加速度和俯仰角,采用主动控制悬置系统可有效地改善卡车行驶平顺性和乘坐舒适性. 相似文献
11.
针对汽车主动安全系统的需求, 提出了一种包括纵向、侧向车速与附着系数的汽车主动安全参数的联合估计方法。基于3自由度车辆动力学模型和刷子轮胎模型, 建立不同道路附着系数条件下的扩展卡尔曼滤波模型, 利用交互多模型算法实现纵向、侧向车速的自适应估计, 并根据计算出的各模型概率实现道路附着系数的实时估计。计算结果表明: 该方法能在不同道路附着系数条件下进行车速的准确估计, 纵向车速估计误差小于1%, 侧向车速估计误差小于5%, 与扩展卡尔曼方法相比误差减小了50%以上, 且能够实时给出道路附着系数估计值, 估计误差小于0.1, 对路面突变的响应时间低于2s。 相似文献