首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 640 毫秒
1.
根据Agent技术和模糊控制方法, 提出了区域交通流协调控制方法。以路段拥挤度和绿灯持续时间为输入变量, 以绿灯修正延长时间为输出变量, 确定了变量数据的获取方式以及变量之间的对应关系, 设计了协调控制器。根据下游交叉口配时的不同方案, 制定了不同的模糊控制规则, 修正了控制策略, 并运用MATLAB进行仿真。仿真结果表明: 采用Agent技术和模糊控制方法后, 平均总延误为127.431 s·km-1, 下降了约9.9%;路段平均流量密度为18.828 veh·km-1; 路段平均流量为9 597 veh·h-1; 平均车速为17.798 km·h-1, 提高了约6.3%。可见, 路网密度明显降低, 交通状况明显改善。  相似文献   

2.
道路交通网络脆弱性动态辨识方法   总被引:2,自引:0,他引:2  
分析了路段和节点的流量传播过程与离散的瞬时动态用户最优路径选择均衡条件, 建立了反应型的动态用户均衡网络交通流模型, 设计了对角化的启发式算法求解模型, 评价了动态化的道路网络脆弱性指数。分析结果表明: 在自由流速度为40km·h-1、堵塞密度为125veh·km-1的9节点12路段构成的算例路网中, 在时刻3路段1受损时, 路段3在高峰时的车辆数量从原有的50veh增加到了100veh, 入口流量增加1倍, 路段2的入口流量降为0;在路段3、6、7和10构成的路径上, 路段1受损使得此路径的车辆数将近增加1倍, 车辆数量的增加导致各路段的阻抗增加。提出的方法能刻画车辆绕开受损路段的交通流传播过程, 能有效辨识道路网络在各个路段各个时刻的脆弱性。  相似文献   

3.
为明确山区隧道出入口区段的车辆运行特性和驾驶行为,揭示隧道洞口交通事故的发生机制,在高速公路和城市快速路各选择3座隧道,采集了小客车和货车在隧道出入口区段的断面速度,高速公路单个断面观测样本大于500 veh,快速路隧道单个断面样本大于1 100 veh,基于断面数据分析了车辆行驶速度的变化规律和影响因素,并建立了运行速度预测模型。分析结果表明:驾驶人临近隧道洞口时会减速,小客车速度降幅为12~21 km·h-1,货车速度降幅为2~10 km·h-1,货车速度降幅低于小客车;洞口位置小客车运行速度大于80 km·h-1,货车运行速度大于70 km·h-1;高速公路隧道出入口段的车速范围为75~110 km·h-1,快速路隧道出入口段的车速范围为60~88 km·h-1,高速公路隧道出入口段的车速普遍高于城市快速路隧道; 驾驶人进入隧道洞内适应环境之后会加速行驶,驶出隧道时有加速行为,但当隧道出口前方有小半径弯道和互通立交时,驾驶人会减速以适应前方的道路条件;隧道入口前100 m至洞口范围内的车辆减速度最大,货车减速度范围为0.23~0.58 m·s-2,小客车减速度范围为0.47~ 0.70 m·s-2;同一断面的速度观测值存在较强的离散性,表明车辆之间存在明显的纵向干涉,容易发生追尾事故。  相似文献   

4.
根据终端区空域运行规则, 采用网络理论建立了终端区空域网络模型, 基于终端区航空器微观行为建立了空中交通流跟驰模型和等待模型, 基于NetLogo仿真平台进行了仿真试验, 分析了不同入度分布的空域结构对交通流的影响。仿真结果表明: 当密度小于等于0.075架次·km-1, 速度大于等于0.04 km·s-1时, 交通流处于自由相; 当密度为0.075~0.200架次·km-1且速度大于等于0.04 km·s-1时, 交通流处于畅行相; 当密度大于0.200架次·km-1, 小于最大密度时, 交通流处于拥塞相; 随着航班波作用的减弱, 交通流进入反向畅行相, 之后进入反向自由相; 当进场交通流分布一定, 入度值依次为2、3、1时, 交通流速度小, 密度大, 拥塞消散最慢, 入度值依次为3、2、1时, 交通流速度大, 密度小, 拥塞消散最快。可知, 增大空域网络上游关键节点的入度, 使进场交通流提前完成汇聚, 有利于交通流快速运行, 增大交通流量; 减小空域网络下游关键节点的入度, 有利于交通流在达到拥塞相后快速完成消散。  相似文献   

5.
分析了高速公路出入口区域交通流特性及事故原因, 以车辆临界减速度和不安全度为基础, 将危险程度由二维矢量转化为一维标量, 提出了以制动减速度和不安全密度指数作为出入口区域行车风险评价指标, 建立了行车风险评价模型。根据安全风险管理规定与人机工程学原理, 确定了风险等级和评价标准; 基于大量试验数据, 提出了高速公路出入口区域主线行车控制标准建议值。分析结果表明: 不限速时, 整个出口区域行车风险处于中等; 限速为65 km.h-1时, 出口区域行车风险均降至低等, 出口区域平均风险值最小, 不安全密度指数峰值从0.112减小到0.064, 下降了42.86%;限速分别为55、50 km.h-1时, 出口区域行车风险反而增至高等, 不安全密度指数峰值分别为0.125和0.121。可见, 限速65 km.h-1的措施最有效。  相似文献   

6.
在实际的快速路交通流系统中,入口匝道的流量和快速路主路的速度都是受限的,因此在对快速路交通流进行控制时考虑这些限制十分必要. 基于迭代学习控制的快速路入口匝道控制是近年来快速路控制领域的一个研究热点,然而,至今为止还没有在输入和状态同时受限情况下的相关收敛性分析. 本文首先介绍了快速路交通流模型,并将交通密度控制转化为输出跟踪问题;然后通过严格的数学分析证明了在入口匝道流量受限和主路速度受限的情况下,基于迭代学习控制的入口匝道控制仍然能保证交通流密度收敛于期望密度;最后通过仿真研究验证了该方法在受限情况下能达到很好的控制效果.  相似文献   

7.
分析了网联自动驾驶车辆(CAV)混合交通流中各车辆类型及其跟驰模式下的车头间距,从通用性混合交通流特征层面理论推导了各车头间距模式的概率表达式,从而对混合交通流进行了数学描述;以混合交通流整体通行流率最大为目标,计算了多车道混合交通流中一个CAV专用道的设置条件以及专用道设置后CAV交通流在专用道和混合道上的最优交通流分配比例,将一个CAV专用道情形推广至多个CAV专用道动态管控的一般性情形,构建了混合交通流专用道动态管控的分析方法;应用案例分析论证了CAV专用道管控方法的有效性。研究结果表明:在交通需求为2 000 veh·h-1时,各CAV渗透率阶段均无需设置CAV专用道;在交通需求为3 000 veh·h-1时,需在CAV渗透率为0.2~0.4的阶段下考虑设置CAV专用道;在交通需求为5 000 veh·h-1时,需考虑在各CAV渗透率阶段下设置CAV专用道;提出的CAV专用道管控方法可根据交通需求和车道总数等条件定量化计算不同CAV渗透率阶段下的最优CAV专用道数量以及CAV交通流最优分配比例,且交通需求能够影响...  相似文献   

8.
以快速路主线通行能力最大、入口匝道排队长度及延误最低为目标,在分析城市快速路可变速度引导的基础上,提出快速路匝道感应控制算法,构建基于可变速度控制下的快速路主线与入口匝道协同控制模型.并利用实际城市快速路路段调查数据,采用VISSIM仿真软件对所建模型、算法进行了仿真验证,结果可知,文中提出的快速路协同控制模型算法可有效提高快速路主线通行能力,大幅降低入口匝道车辆排队长度及平均延误,减少车均行程时间.  相似文献   

9.
为研究山地城市快速路桥隧组合场景的“车-路”耦合环境和线形协调程度,在重庆市主城区快速路3隧2桥组合场景开展自然驾驶实验,采集18名驾驶员的实时运行速度和13个断面的小型车地点车速,根据道路条件和运行速度数据构建线形综合评价模型。实验结果表明:在隧道-桥梁-隧道多场景切换连接方式中,主线路段的运行速度均值分布在50.00~64.25 km·h-1;驾驶员在桥梁路段行驶最为警惕,从桥梁驶进衔接匝道或隧道入口时,车辆速度明显减小,有15%以下的车辆会低速通行或经历严重的交通拥堵,其速度分布在8.00~39.50 km·h-1;验算实验路段的“车-路”耦合强度发现,实验路段整体运行安全状况水平良好,线形条件较好。对山地城市快速路桥隧组合场景的速度行为管控不能只依靠对单体隧道或桥梁的交通管理手段和治理措施,需考虑与上游道路衔接路段的距离和受信号控制的时长等。  相似文献   

10.
为了研究城市快速路匝道出口及交织区的交通运行特性,以长春市具有代表性的快速路匝道出口作为调查对象,以调查实测的数据为基础建立模型,分析交通冲突特性、交通流流量特性及密度特性,建立研究路段交通冲突数与流量和交通密度的关系模型。研究结果表明,快速路出口处车流量的冲突数随着交通流量的增加而增加,而与交通密度的关系中则存在一个临界值(交通密度达到131辆/km,交通流变为强制流)。本文研究成果可以为城市快速路匝道出口控制提供理论依据与参考借鉴。  相似文献   

11.
为了更好地模拟智能网联车辆(CAV)的跟驰特性, 在纵向控制模型(LCM)的基础上考虑V2V环境下多辆前车速度和加速度的影响, 构建了智能网联环境下的纵向控制模型(C-LCM); 对LCM和C-LCM进行稳定性分析, 比较了2个模型的交通流稳定域, 确定了不同通信距离时C-LCM对交通流稳定域的影响; 设计数值仿真试验对加速和减速的常见交通场景进行模拟, 分析了在V2V通信条件下CAV的跟驰行为特征; 仿真分析了CAV不同通信距离以及不同渗透率影响下的交通流安全水平; 构建了包含不同CAV渗透率的混合交通流基本图模型。研究结果表明: 交通流稳定域随着考虑前车数量的增多而增大, 当只考虑1辆前车时, 前车与本车的间隔越远, 车辆速度系数对C-LCM稳定域的影响越大; C-LCM可以提前对多前车的行为做出反应, 更好地模拟CAV的动力学特征, 在减速情景中速度超调量从0.15减少为0.08, 最大速度延迟时间由7.5 s缩短为4.9 s, 在加速情景中速度超调量从0.07减少为0.04, 最小速度延迟时间由3.5 s缩短为2.6 s; 随着CAV渗透率的提升, 交通流的安全水平不断提升, 当通信范围内有4辆CAV时, 交通流的安全性能达到最高, 其TIT和TET指标的最大减少量分别为57.22%和59.08%;随着CAV渗透率的提升, 道路通行能力从1 281 veh·h-1提升为3 204 veh·h-1。可见, 提出的C-LCM可以刻画不同车辆的跟驰特点, 实现混合交通流建模, 并降低混合交通流的复杂性, 为智能网联车辆对交通流的影响分析提供参考。  相似文献   

12.
基于2017年中国高速公路联网收费系统数据库, 辅以典型收费站抽样调查, 分析了中国高速公路网运输量指标的结构性特征。分析结果表明: 2010~2017年高速公路车辆总行驶量持续增加, 其中2017年总行驶量为6.80×1011 veh·km, 客、货车行驶量分别为4.70×1011、2.10×1011 veh·km; 2017年高速公路客运量为229.65亿人次, 周转量为16 886.05亿人·km, 平均行程为72.96km, 运输密度为1 257.47万人·km·km-1, 分别较2016年增长了11.72%、9.13%、3.07%、4.21%;营业性客车完成的旅客周转量为5 055.71亿人·km, 同比增长了1.76%;Ⅰ型客车流量在客车总流量中的比重为95.70%, 其客运量和旅客周转量都保持快速增长态势, 客运量为165.28亿人次, 旅客周转量为10 862.80亿人·km, 较2016年分别增长了15.25%和11.60%;2017年高速公路货运量为170.45×108 t, 周转量为287.05×1010 t·km, 平均运距为167.89km, 运输密度为2 138.32×104 t·km·km-1, 分别较2016年增长了15.33%、16.17%、0.42%、11.37%;2轴货车流量最大, 占高速公路总货车流量的41.14%;货车的空车走行率为26.81%, 省内与跨省运输货车空车走行率分别为43.80%、15.67%。高速公路运输总体指标在2017年稳中有升, 货物运输量、货物种类、货物价值是货物运输经济结构调整的效果集中体现。  相似文献   

13.
高速公路半幅封闭施工区限速标志效能试验   总被引:1,自引:0,他引:1  
采用现场试验与统计分析, 研究了高速公路半幅封闭施工作业区交通标志尤其是限速标志的警示效能, 提出了分阶限速方案和交通标志效能试验方案, 选择典型路段开展了既有交通标志效能试验、限速标志位置试验、分阶限速效能试验和优化后交通标志效能试验。试验结果表明: 既有交通标志尤其是限速标志效能不足, 试验路段客货车经过限速标志后车速远高于限速值, 且速度降低幅度很小。通过分阶限速优化交通标志设置, 施工作业区车辆速度明显降低, 客车速度降低38km·h-1, 货车速度降低32km·h-1; 施工作业区客车运行速度与限速值的差值从60km·h-1降低到15km·h-1, 货车速差从40km·h-1降低到5km·h-1, 基本达到限速值, 整个交通流运行速度与限速值差值变化趋势一致。可见, 分阶限速优化后的交通标志效能提高明显。  相似文献   

14.
为探究智能网联自动驾驶车辆(Connected and Autonomous Vehicle, CAV)与人工驾驶车辆 (Human Driving Vehicle, HDV)混合行驶的多车道异质交通流运行特征,本文剖析了异质交通流中不同类型车辆的跟驰模式,提出不同类型车辆双车道及多车道换道模型,进而构建了多车道异质交通流仿真模型,并分析了不同CAV混入率下的道路通行能力及换道行为特征。研究结果表明,随着CAV渗透率的提高,单车道通行能力由1678 pcu·h-1提升至4200 pcu·h-1,交通流临界密 度由25 pcu·km-1增长至35 pcu·km-1 ,同一渗透率下不同车道数的道路通行能力及临界密度值呈现显著差异性。异质交通流换道行为呈现三阶段特征:在低密度下,不同类型车辆均可自由行驶及换道;密度在20~100 pcu·km-1 时,车辆换道频率呈“上凸”状,CAV渗透率越高,HDV凸形峰值越大,而CAV峰值较低;在高密度下,受可换道空间的约束,不同类型车辆均无法完成换道。此外,进一步讨论了不同CAV渗透率及密度条件下的异质交通流仿真效益,包括交通量提升及秩序改善特征等。研究成果有助于理解智能网联环境下多车道异质交通流运行状况,为未来异质交通流管理提供理论参考。  相似文献   

15.
针对传统人驾车(HV)和网联自动车(CAV)组成混合交通条件下的快速路道路缩减瓶颈问题,从群体控制角度,提出了一种新的速度协调控制策略(简称节流控制策略);基于瓶颈交通状态和Greenshields模型,设计了领航CAV速度控制器;面向CAV节流群体组群过程的控制问题,提出了目标切换下的非线性控制器;构建了CAV节流群体类队列控制器,实现了基于瓶颈交通状态的群体形态与群体速度动态调节,进而联合领航CAV速度控制方法,周期性管控超过每组节流群体的车辆;提出了CAV纵向安全控制器来解决组群和群体演化过程的车辆安全问题。仿真结果表明:在快速路瓶颈路段下,对比传统交通系统,提出的动态节流控制策略CAV渗透率达到5%,在车流量分别为2 000、3 000、5 000、6 000 veh·h-1条件下,可对应分别提高通行效率约5.87%、16.97%、11.07%、10.25%;在固定车流量为3 000或6 000 veh·h-1的快速路混合交通瓶颈路段中,对比传统交通系统,若CAV渗透率分别为10%、20%、30%,受控交通系统的通行效率可提升约24%;通过对车头间距分析,受控CAV在节流全过程中无碰撞事故发生,且可与前车保持9 m以上安全距离。可见,节流控制策略在应对快速路瓶颈问题是有效的。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号