首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
黄土隧道基底区域围岩压力确定直接关系到隧道基底承载力是否满足结构稳定及运营安全的要求。以客专浅埋黄土双线大断面隧道为研究对象,分别采用普氏理论、太沙基理论、谢家烋理论、比尔鲍曼理论、卡柯公式、全土柱法、岩柱法、规范推荐方法、有限元法与实测值进行对比分析,推荐大断面黄土浅埋隧道采用太沙基理论与有限元方法相结合的方法计算确定基底围岩压力。  相似文献   

2.
围岩压力是指在开挖隧道后围岩变形以及应力重新分布的一种物理现象。随着公路隧道工程建设规模的不断扩大,公路隧道工程中由围岩压力引起的围岩变形、坍塌以及支护变形等现象发生的次数也越来越多,由此人们开始认识到围岩压力的存在,并加大了对其研究力度,以确保隧道工程的质量。但是由于隧道工程中岩体、施工等各方面的随机性,以及隧道结构的复杂性,导致了对围岩压力的测量、计算较为困难。因此,在当下公路隧道建设大规模开展的形势下,必须要继续加大研究力度,认真分析压力计算方法,以提高公路隧道工程中围岩压力计算水平。  相似文献   

3.
目前浅埋偏压隧道围岩压力主要采用隧规计算方法,而对于左右洞隧道洞门不在同一里程,一侧需要开挖路基边坡,使隧道从自然放坡状态转为邻路基变坡状态的工况,隧规不适用于计算其围岩压力. 依托安徽某高速公路,运用极限平衡原理推导了邻路基变坡条件下浅埋偏压隧道围岩压力解析解. 计算结果表明:由于变坡的存在,深埋侧修正算法计算竖向围岩压力小于规范法,相对误差为15.98%,水平围岩压力保持不变;浅埋侧修正算法计算竖向围岩压力及水平压力均小于规范法,其竖向压力相对误差为24.93%,水平压力相对误差为5.50%,变坡的存在对浅埋侧影响较大;对比围岩竖向及水平偏压率,有变坡围岩偏压率更大;围岩位移、应力及等效应力,有变坡约为无变坡的1~5倍,围岩及结构更加偏于不安全.   相似文献   

4.
富水全风化花岗岩隧道变形规律与力学特性   总被引:1,自引:0,他引:1  
用地质钻机在隧道中心线上方钻取原状土进行土工试验,采用电子水准仪量测地表和拱顶沉降,采用JSS30A数显收敛仪进行隧道水平收敛监测,采用JTM-V2000D型振弦式土压计量测围岩与初期支护间压力、初期支护与二次衬砌间压力,通过对寨子岗隧道围岩变形及压力进行量测,得到了富水全风化花岗岩地区隧道围岩变形规律与力学特性.分析结果表明:深浅埋隧道的划分界限为2倍洞径;隧道洞口段洞顶土体同时存在竖向位移和水平位移;围岩的水平收敛稳定时间及拱顶沉降的稳定时间和隧道埋深关系不大;浅埋隧道的埋深越大,水平收敛值及拱顶沉降值越大,深埋隧道的水平收敛值及拱顶沉降值和隧道埋深关系不大;围岩与初期支护间压力分布比较均匀,浅埋隧道各量测点压力值差异较小,压力随着隧道埋深的增加逐渐增加;深埋隧道各点压力分布的不均匀程度有所增加,各点压力值随着隧道埋深的增加变化很小;围岩与初期支护间压力均大于初期支护与二次衬砌间压力,初期支护与二次衬砌间的最大压力均不大于100 kPa.  相似文献   

5.
新奥法施工的核心思想是把隧道围岩和支护结构作为一个完整的支护体系来考虑,监控量测是新奥法施工不可缺少的环节.以奉(节)巫(溪)高速公路孙家崖隧道为工程背景,基于该隧道浅埋、偏压、隧道洞口段穿越滑坡体等工程特点,通过现场监测隧道内围岩变形和围岩应力,结合左右线施工方法分析得出,该隧道左右线围岩的变形规律;围岩压力的分布规律;围岩变形与压力的关系;隧道与滑坡体之间的相对稳定关系.研究过程为该隧道的信息化施工提供了保证,同时研究成果也可为设计和分析研究其它同类工程提供参考.  相似文献   

6.
尚峰利 《交通标准化》2014,(14):201-204
采用理论分析、数值模拟以及现场监控量测等手段对公路隧道围岩变形破坏理论进行较深入的研究。通过分析开挖过程中围岩损伤演化,获得了损伤变量与围岩材料参数之间的关系,提出了围岩力学参数的预测方法。通过岩体破坏机理、围岩损伤应力影响范围以及影响围岩稳定性的各个因素综合研究,建立了卸荷状态下的围岩损伤本构关系和基于能量耗散的损伤本构模型。基于一般弹塑性数值分析原理,建立了考虑围岩参数劣化过程的隧道围岩损伤演化分析方法,分析了开挖应力状态下隧道围岩的弹塑性损伤演化机理。建立了基于经验公式和基于围岩渐进性破坏理论的公路隧道围岩压力演化趋势及预测模型,提出了公路隧道围岩压力演化趋势的预测方法。  相似文献   

7.
以离军高速公路黄土连拱隧道为工程背景,对地表沉降、地质和支护状况、拱顶下沉和水平收敛进行了现场监测,并采用有限元方法分析了隧道围岩拱顶下沉和水平收敛的变化规律,进而研究了黄土连拱隧道三导洞法施工的围岩变形规律和影响因素.结果表明:黄土隧道Ⅳ类围岩比Ⅴ类围岩变形小,围岩稳定较快;三导洞施工法开挖中、左、右导洞和断面开挖时,围岩应力一直处于重新调整中,变形也在不断变化,且施工中开挖顺序对围岩变形有很大影响,在洞室开挖施工中,要密切注意拱腰及拱顶的变形情况,加强Ⅴ类围岩监测,及时进行临时支护,尽早完成右洞初期支护,以防变形过大而围岩失稳;影响黄土隧道围岩变形的主要因素是黄土的工程特性和地质工程环境.  相似文献   

8.
针对目前黄土隧道力学计算时未考虑围岩特性影响的现状,以乔原隧道工程为例,采用数值模拟方法,通过fish编程将围岩特性引入到隧道开挖中,分析围岩结构对隧道变形的影响。结果表明:考虑围岩特性影响后隧道变形值较大;考虑围岩特性影响后隧道变形值更接近实测结果。  相似文献   

9.
应用可靠度理论对隧道围岩稳定性进行评定的难点是围岩变形稳定功函数为隐式或为高度非线性,为解决这一问题,将影响隧道围岩变形的因素视为随机变量,结合敏感性分析原理和有限元分析方法,先通过有限元分析求解每一个随机变量单独变化时圆形隧道拱顶沉降位移,再根据围岩位移计算结果进行非线性拟合得到拱顶沉降位移随单个因素变化时表达式,然后应用多元非线性回归求解围岩位移与多个随机变量之间的近似表达式.以圆形隧道洞室表面围岩刚好达到剪切塑性极限为临界条件时的洞顶沉降位移解析解作为围岩极限位移,根据围岩位移近似表达式和极限位移建立围岩变形稳定功能函数后进行围岩稳定可靠度计算.为了验证本方法的可行性,以某圆形断面隧道为例,采用设计点方法计算了围岩稳定可靠指标并对其稳定性进行了评定.本方法简单可行,计算精度能满足工程要求且具有一定的实用性.  相似文献   

10.
基于Mohr-Coulomb强度准则,利用极限分析上限定理,推导出浅埋小净距隧道围岩压力计算新公式.采用MATLAB数值模拟软件中的fmincon函数进行最优化计算,求解该破坏模式下围岩压力的上限解,并将该计算值与规范法计算结果进行了对比.研究结果表明:该计算值与规范法计算结果比较接近,验证了该计算方法可行;随着系数m...  相似文献   

11.
杨河隧道地质构造复杂,洞身出现长段落炭质片岩,岩体自身强度弱、稳定性差,遇水化泥,极易坍塌。隧道掘进后,围岩变形严重,导致初期支护钢拱架扭曲、坍塌,安全控制及施工难度大。根据实测变形时态曲线和围岩压力时态曲线,应用蠕变模型反演了岩石流变参数,分析了隧道炭质片岩地段施工大变形的机理和特征;提出了炭质片岩分级标准对应的防治措施。研究取得了复杂炭质片岩条件下软弱围岩大变形控制技术突破,形成了复杂炭质片岩条件下控制隧道大变形的快速施工方法。  相似文献   

12.
根据某隧道穿煤段(C2煤层)的工程实例,结合围岩位移、围岩内位形、锚杆轴力和钢拱架压力等现场监测,而进行的有关隧道穿过煤段围岩-支护结构的变形特征的分析结果表明:围岩位移变形分为急剧增长、缓慢增长和趋于稳定三个阶段:受高应力与岩体结构的影响,拱顶下沉为水平收敛的3倍,且初期下沉快,下沉时间长;围岩浅部较深部变形快且大.松动圈半径为2.5m~3.0m。该研究结果为深埋隧道穿越煤段设计和施工提供了重要的科学依据。  相似文献   

13.
为探明高地应力场主应力方向对软岩隧道围岩稳定性的影响规律,采用自主研发的"隧道三维应力场模拟试验系统"开展了大型三维地质力学模型试验,研究了最大水平主应力与隧道轴线平行和垂直两种工况下软岩隧道的围岩稳定性.研究结果表明:最大水平主应力与隧道轴线平行时,拱顶沉降和拱脚收敛的最终值分别为-0.221 m和-0.454 m,拱顶、左拱脚、右拱脚和仰拱处的围岩压力分别为0.478、0.361、0.416 MPa和0.261 MPa;最大水平主应力与隧道轴线垂直时,拱顶沉降和拱脚收敛的最终值分别为-0.309 m和-0.548 m,拱顶、左拱脚、右拱脚和仰拱处的围岩压力分别为0.579、0.652、0.593 MPa和0.327 MPa;两种工况下,围岩压力的最小值均出现在仰拱处、最大值均出现在墙脚处,围岩的径向应变增量均为拉应变增量,切向应变增量均为压应变增量,说明隧道开挖导致洞周围岩径向应力减小、切向应力集中.   相似文献   

14.
将锚杆作用力视为体力作用于围岩内, 将初期支护与锚杆锚固范围内的围岩视为围岩加固体, 建立了围岩力学模型, 基于统一强度理论分析了隧道蠕变条件下的围岩应力与变形规律, 推导了复合衬砌应力与变形表达式, 分析了隧道围岩蠕变过程中支护结构受力特点及不同初期支护强度下二次衬砌受力变化规律。分析结果表明: 当初期支护按照“初期支护应与围岩共同受力且能保证施工阶段安全”的原则进行设计时, 在围岩蠕变作用下, 锚杆与喷射混凝土最大受力分别为48、286kPa, 与开挖阶段相比分别增大了57.5%、13.7%, 且超过支护结构最大承载力, 说明在进行初期支护设计时, 仅满足隧道开挖过程中围岩稳定而不考虑蠕变产生的附加应力影响, 可能造成隧道运营过程中初期支护结构破坏, 不利于隧道稳定; 当二次衬砌厚度由300mm增大至500mm时, 二次衬砌最大受力增大了40.5%, 荷载分担比由25.2%增大至36.2%, 而增大初期支护强度后, 二次衬砌受力减小了14.5%, 荷载分担比由25.2%减小至22.3%, 说明二次衬砌荷载随初期支护强度增大而减小, 而随自身强度增大而增大, 应重视初期支护与二次衬砌支护强度的协调配置, 实现围岩压力的合理分配; 在软岩地质条件下, 应保证隧道施工过程中围岩稳定并避免围岩蠕变过程中发生结构破坏, 以实现初期支护与二次衬砌共同承担蠕变引起的附加应力。   相似文献   

15.
采用数值模拟方法, 在不同震级人工地震波作用下, 研究了具有近距离平行地裂缝的地铁隧道的加速度、位移和内力特征, 计算了地裂缝的影响区域、围岩动土压力变化规律和隧道与围岩接触动土压力变化规律。研究结果表明: 在地表距隧道水平距离约25~50m范围内加速度响应存在一个附加放大区域; 当输入地震动强度较小时(50年超越概率为63%), 地铁隧道拱顶和拱底处相对水平位移都较小(约为0.39mm), 但随着输入地震动强度的增大(50年超越概率为2%), 拱顶和拱底的相对水平位移均逐渐增大, 最终增大至1.53mm; 在地震动作用下, 隧道结构的左、右拱肩和拱脚处的轴力都较大, 其中右拱脚处的轴力最大, 为1 926kN; 隧道结构的左、右拱腰处的弯矩和剪力都较大, 其中最大弯矩与最大剪力在右拱腰处, 分别为78.54kN·m与1 830kN; 随着地震动强度的增大, 隧道结构的内力逐渐增强; 地裂缝附近的动土压力较大, 并向两侧逐渐减小; 在中震作用下隧道拱顶处, 地裂缝上盘影响宽度为25m, 下盘影响宽度为20m, 在拱底处, 地裂缝上盘影响宽度为26m, 下盘影响宽度为22m;在大震作用下, 地裂缝上、下盘影响宽度较中震时增大约35%;地裂缝附近的隧道拱顶和拱底的动土压力变化规律与无地裂缝时基本一致, 但隧道结构附近的动土压力较大, 其最大值为138kPa; 在地震动作用下, 隧道结构拱腰处的接触动土压力增量较大, 右拱腰处即靠近地裂缝一侧最大, 增量为45.27%, 拱顶次之, 增量为13.41%, 拱底最小, 增量为6.86%。   相似文献   

16.
隧道在开挖过程中,经常会经过水平层状围岩,这将给隧道施工带来很大的困难,造成安全事故.通过对水平层状围岩隧道顶板变形特征及机理分析得出:水平层状围岩在隧道顶板层面薄弱带附近由于不同步弯曲沉降产生分离,形成离层;水平岩层软硬相间,层间黏结力较差,隧道开挖后拱顶围岩稳定性较差,拱顶失稳几率较大;对于水平层状围岩地区要做好塌...  相似文献   

17.
双侧壁导坑施工对偏压隧道初期支护变形的影响   总被引:1,自引:0,他引:1  
随着交通基础设施建设的迅速发展,采用双侧壁导坑施工软弱围岩段偏压大跨径隧道的工程项目越来越广泛,笔者通过对工程实例的研究,对双侧壁导坑的施工顺序与偏压隧道初期支护变形的相关关系,进行了归纳和总结,以期为以后的工程施工提供参考。  相似文献   

18.
选取软塑黄土层分布于隧道拱顶、洞身和隧底3组典型断面开展实测研究,分析了软塑层影响下的围岩变形特征、支护结构力学特征及其差异性,提出了基于实测数据确定支护特性曲线的方法,揭示了软塑黄土层影响下的围岩与支护动态作用机制,给出了相应的防控理念及措施。分析结果表明:隧道围岩变形由大到小依次为软塑黄土层分布于拱顶段、洞身段和隧底段;软塑黄土层分布于拱顶段支护结构拱肩和边墙脚、洞身段拱腰及其以下位置、隧底段拱部和仰拱承受较大围岩压力作用;支护结构承受主要荷载来压方向不同、围岩应力随开挖步序释放率不同及地下水渗流路径不同是3组断面支护结构应力存在差异的直接原因;软塑黄土层分布于拱顶和洞身段时,围岩超前应力释放率约为35%,上台阶开挖支护结构力学性能迅速恶化,软塑黄土层分布于隧底段时,下台阶开挖软塑黄土层对支护结构将产生显著影响;针对上述3类工况,提出的强支护、控侧压和防突沉的防控理念及超前帷幕注浆、大锁脚和基底袖阀管注浆等施工控制措施可有效避免施工灾害的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号