首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对结构影响较大的是混凝土结构内的最高温度、内外温差及降温速率。通过对高墩大跨连续刚构桥梁混凝土浇筑养护期间的温度实测及应力分析得知,结构内的最高温度是由初始浇筑温度与水化热温升共同决定的,而初始浇筑温度又是水化热反应的起始温度;内外温差包括结构中心与表面的温差及结构与外界环境的温差;降温包括结构自身因放热量小于散热量出现的内部自然降温或人工冷却降温和因拆模或养护不当遭受外界寒潮引起的表面温度骤降。  相似文献   

2.
路兆印 《公路》2022,67(3):182-187
为了确定福建东南沿海山区高墩大跨桥梁的箱梁温度场,对后亭溪大桥PC箱梁水化热阶段和日照温度分布及其应变进行了连续观测,研究了混凝土浇筑前后箱梁温度场及其效应的时变规律。结果表明:箱梁腹板中部混凝土的最高温度和最大温差明显高于顶板和底板内的混凝土,但单箱双室的中腹板的最高温度和最大温差明显小于两侧腹板;混凝土浇筑后温升较快,顶板、底板和腹板混凝土分别在浇筑后约16~17 h和22~26 h达到最高温度,浇筑混凝土后约120 h,顶板温度已经逐渐下降至外界大气温度附近,而底板和腹板则需要更长时间;由于混凝土凝结硬化过程中水化热和收缩的影响产生的温度效应,混凝土浇筑后大约20~24 h混凝土拉应变达到最大,最大拉应变达到100με,虽然从尺度上有别于大体积混凝土,但考虑混凝土受拉性能较差,应考虑其产生温度裂缝的可能性,应注意采取措施控制温差。  相似文献   

3.
混凝土水化热是单箱多室混凝土箱梁产生早期裂缝的主要因素之一,而目前对于单箱多室混凝土箱梁水化热研究较少。以佛山市奇龙大桥边跨单箱多室混凝土箱梁作为研究对象,通过各重要部位布置的测点对浇筑后的水化热温度场进行了长达14 d的连续测试,明确了箱梁不同部位水化热的发展规律。基于ANSYS有限元软件对该混凝土箱梁温度场进行了仿真分析,分析结果与实测值吻合;基于混凝土材料的力学性能的发展规律,对水化热温度场所致的结构应力场进行了分析,得到了混凝土箱梁各控制点的应力时程曲线及箱梁腹板内外温差的控制限制。结果表明:对于所研究的混凝土箱梁而言,外腹板的主拉应力最大,其值为2.14 MPa,小于对应时刻的抗拉强度值2.53 MPa,但应力长时间处于较高的水平,因此腹板内外温差应控制在30℃以内。根据实测与分析结果,提出了单箱多室箱梁开裂控制的混凝土配合比设计及养护建议。  相似文献   

4.
王金海 《中南公路工程》2012,(2):172-175,190
目前大跨预应力混凝土箱梁桥的早期开裂现象较为普遍,已成为桥梁工程界极为重视的重大技术问题。水化热是引起混凝土箱梁早期裂缝主要原因之一。以某箱梁桥水化热实测数据为基础,探讨不同配合比条件下水化热对箱梁混凝土早期开裂的影响,结果表明:过高的水化热是引起箱梁腹板早期开裂的主要原因之一,实际施工可在混凝土中掺入适量粉煤灰,以减少水泥用量从而降低混凝土的水化热,就该桥测试数据而言,掺入了18%的粉煤灰可显著的降低箱梁混凝土水化热的影响。大跨预应力混凝土箱梁桥施工早期应采取有效措施使结构的内外温差控制在30℃以内。  相似文献   

5.
大体积混凝土承台整体浇筑能提高承台的整体性,但水泥的水化热反应较分层浇筑时剧烈,产生温度裂缝的概率高。文中采用有限元结构计算程序,用水化热分析模块模拟计算承台整体浇筑的过程,提出了控制混凝土内部最高温度、降低混凝土降温速率、优化边界约束等温控措施。  相似文献   

6.
箱梁混凝土水化热温度及温度应变的试验研究   总被引:4,自引:0,他引:4  
通过对主跨32m的北京城市铁路预应力混凝土连续箱梁水化热温度及温度应变测试结果的分析,阐述了箱梁混凝土水化热温度及温度应变发展 的特点,提出了防止温差过大而引起混凝土开裂的工程措施。  相似文献   

7.
杭州湾跨海大桥北航道桥斜拉桥承台混凝土温度裂缝控制   总被引:3,自引:1,他引:3  
斜拉桥承台一般均为大体积混凝土,因水泥水化热的作用,承台内外温差过大,易使混凝土出现早期温度裂缝。杭州湾跨海大桥主跨承台混凝土浇筑分层均较厚,为3~4.5 m,在承台施工中采取了行之有效的温控措施,有效地控制了温度裂缝,确保了承台混凝土的耐久性。  相似文献   

8.
张言丰 《交通科技》2014,(1):99-101
研究不同水泥含量混凝土施工初期内部温度应力分布的特征,提出相关病害的预防有效措施,以某特大桥0号箱梁为研究对象,以MIDAS/FEA有限元分析软件为计算平台,采用有限单元法对施工期混凝土水化热温度场进行了数值模拟计算,分析了2种不同水泥含量的计算方案。结果表明:2种水泥含量下混凝土浇筑3d左右内部温升均达到高峰;低放热混凝土内部应力集中分布区域面积较小,有利于降低混凝土温度裂缝的出现;箱梁腹板与横隔板交界处温度应力集中,应注意此处的降温和减小应力措施。  相似文献   

9.
《公路》2019,(4)
大体积混凝土浇筑过程中,由于水泥水化热影响,在混凝土内外会产生较大的温差,进而可能导致混凝土中出现贯通裂缝,需采取必要措施加以控制。结合青海省某黄河特大桥拱座大体积混凝土温度监控项目,总结了大体积混凝土施工时应采取的一些温控措施;根据实测温度数据,得到了高原大温差地区大体积混凝土施工过程中的混凝土温度时程变化、梯度分布规律,将各项温控指标与《大体积混凝土施工规范》(GB 50496-2009)限值进行了比较,发现大温差的气候条件会使混凝土里表温差、日降温速率较大地超出规范限值。  相似文献   

10.
为研究大体积混凝土水化热温度场的分布规律,了解冷却水管的具体降温效果以及相关参数对降温效果的影响,以某大跨桥梁大体积混凝土承台为工程背景,采用有限元方法建立承台实体模型,模拟混凝土水化热温度场,分析冷却水管的质量流率和初始温度等参数对混凝土水化热温度场的影响。结果表明:混凝土浇筑后的水化热温度场总体呈现出先升后降的趋势,一般浇筑后2~3d达到温度峰值;布置冷却水管后,混凝土水化热的温度峰值降低了7%~31%,混凝土内总热量减少了约50%;改变冷却水管的质量流率对水化热温度场升温阶段的影响很小,对降温阶段的影响比升温阶段有所增大;降低冷却水初始温度可以加快水化热冷却速率,实际工程中,不必将冷却水温降得过低,保持在环境温度左右即可达到良好的冷却效果。  相似文献   

11.
混凝土箱梁的水化热温度分析   总被引:7,自引:1,他引:7  
通过对跨径为165m的南京长江二桥北汊主桥预应力混凝土连续箱梁温度测试结果的分析,阐述了箱梁混凝土早期水化热温度发展的特点,提出了防止温差过大而引起混凝土开裂的工程措施。  相似文献   

12.
文章结合实际工程,探究大体积混凝土由于水泥水化热导致混凝土在施工及养护过程中出现的升温和降温过程,利用ANSYS有限元分析模拟不同工况,得到各工况不同龄期条件下混凝土的理论最高温度、最大温度应力,求得大体积混凝土安全系数。通过模拟确定适合当地气候条件的混凝土浇筑温度,为以后车站结构大体积混凝土浇筑工作提供依据。  相似文献   

13.
两座钢拱架现浇混凝土箱拱腹板冬季施工过程中,发现两桥腹板相同位置均出现多条早期竖向贯穿性裂缝。在腹板早期抗压强度、水化热测试的基础上,分别进行腹板温度收缩理论计算和有限元模型计算,综合分析表明早期混凝土的大幅降温和收缩作用是引起腹板早期竖向贯穿裂缝的主要原因。  相似文献   

14.
大跨预应力混凝土箱梁桥混凝土的水化热极可能是混凝土出现早期可见裂缝的重要因素之一。该文对某大跨预应力混凝土箱梁桥左右幅0#块在不同配合比条件下进行了水化热温度及应力测试,基于混凝土早龄期力学性能发展规律的实测结果,应用有限元软件对箱梁混凝土水化热中的箱梁温度场和应力场进行了时程分析。结果显示:水化热计算值与实测值吻合良好,过高的水化热是大体积混凝土早期开裂的主要原因之一。  相似文献   

15.
哑铃形钢管混凝土截面水化热温度分布有限元分析   总被引:4,自引:0,他引:4  
林春姣  郑皆连  秦荣 《中外公路》2007,27(4):125-127
应用有限元程序对哑铃形钢管混凝土拱肋水化热作用下的截面温度场进行计算,并与圆形截面相比较,分析了截面组成、圆管直径、腹板高度、不同风速对温度场的影响。结果表明:哑铃形截面的最高温度要高于圆形截面最高温度,钢管管径和外界风速对截面温度的影响较大;而腹板高度对截面温度场影响则较小。  相似文献   

16.
为研究大跨径预应力混凝土连续梁桥在实际服役环境下顶板、腹板和底板随时间变化的温度分布状况,通过埋设传感器,对依托工程桥梁在日照作用下的温度场分布做了试验研究,结果表明:在高温、风速较小的天气情况下,箱梁混凝土温度变化不同步,从外到内依次延后,温度达到极值的时间依次滞后;混凝土的内部温度变化情况最小,箱梁底板和顶板位置会出现竖向温差,腹板位置会出现横向温差,并且竖向温差也会出现在沿腹板的竖向位置。  相似文献   

17.
陈金义  李扬  廖伟华  杨高飞 《公路》2023,(1):106-110
针对某大跨径预应力混凝土连续刚构箱梁早龄期腹板裂缝问题,对裂缝进行了现场详细的调查统计,建立了混凝土箱梁开裂节段水化热分析模型。分析结果表明,混凝土早龄期水化热产生的温度场未完全稳定,主拉应力呈现先快速增长后缓慢衰减的趋势;在早龄期张拉纵向预应力钢束后,在温度与预应力作用耦合下,混凝土箱梁腹板中产生了较大的主拉应力,从而导致腹板开裂。本研究结果可为研究大跨径连续刚构箱梁水化热效应和确定腹板钢束张拉时机提供参考。  相似文献   

18.
预应力混凝土箱梁水化热温度及应变的试验研究   总被引:2,自引:0,他引:2  
本文通过对秦沈客运专线32m箱型梁的水化热温度和温度应变观测数据的统计与分析,研究箱梁水化热阶段的温度尤其是温度应变的变化规律。为研究水化热阶段的温差应力及相应的早期裂缝控制提供参考依据。  相似文献   

19.
文章以甘肃地区永古高速柳条河大桥为研究背景,分析了混凝土箱梁水化热温度时程曲线和温差的分布形式,研究了混凝土箱梁水化热温度的变化规律,并对该地区典型环境下混凝土裂缝的控制方法提出了建议,为相似环境地区提高混凝土箱梁的质量提供参考。  相似文献   

20.
袁明  霍红杰  颜东煌 《中外公路》2011,31(3):138-142
由于在高墩大跨连续刚构桥温度裂缝,因此笔者基于温度场热量传导理论建立有限元仿真模型进行水化热理论计算,并结合贵州某高墩大跨连续刚构桥0#块施工浇筑和养护过程中箱梁水化热温度现场监测,通过实际数据与有限元模型理论计算对比,分析箱梁混凝土水化热温度发展变化特点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号