首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Elastic FE simulation with inherent deformation and interface element is an ideal and practical computational approach for predicting welding distortion in production of thin plate structures. In this study, recent researches on inherent deformation theory and welding induced buckling investigation of ship panel were sequentially introduced. Taking bead-on-plate welding as research objective (plate with 2.28 mm in thickness), integration approach with inherent strain was proposed to accurately and conveniently evaluate magnitude of inherent deformation. Also, average temperature to clarify the mechanism of influential effect of plate width on magnitude of inherent deformation was presented and examined. With the mechanism investigation of welding induced buckling by elastic FE analysis using inherent deformation, an application for predicting and mitigating the welding induced buckling in fabrication of ship panel with thin plates by employing different welding procedure patterns was carried out. Examined intermittent zigzag welding procedure is effective to reduce the magnitude of in-plane inherent shrinkages and control the possible welding induced buckling.  相似文献   

2.
建闸河口闸下潮波变形数值模拟研究*   总被引:1,自引:0,他引:1       下载免费PDF全文
我国河口建闸之多,闸下河道淤积之严重,世界罕见。众多学者对建闸河口闸下淤积的机理进行了系统的分析和研究,认为潮波变形是造成闸下河道淤积的动力因素,闸下引河长度(河口到闸的距离)不同,潮波变形的特征也有所不同,淤积形态和特征也不相同。在潮波变形概化物理模型试验的基础上,建立了二维潮流数学模型,通过数值模拟计算,得出了不同引河长度时的潮波变形特征,为预测和分析不同闸址建闸所引起的淤积特性分析提供研究依据。  相似文献   

3.
In a Thermal-Elastic-Plastic (TEP) FE analysis to investigate welding induced buckling of large thin plate welded structure such as ship panel, it will be extremely difficult to converge computation and obtain the results when the material and geometrical non-linear behaviors are both considered. In this study, an efficient FE computation which is an elastic FE analysis based on inherent deformation method, is proposed to predict welding induced buckling with employing large deformation theory, and an application in ship panel production is carried out. The proposed FE computation is implemented with two steps:(1) The typical weld joint (fillet weld) existing in considered ship panel structure is conducted with sequential welding using actual welding condition, and welding angular distortion after completely cooling down is measured. A TEP FE analysis with solid elements model is carried out to predict the welding angular distortion, which is validated by comparing with experimental results. Then, inherent deformations in this examined fillet welded joint are evaluated as a loading for the subsequent elastic FE analysis. Also, the simultaneous welding to assemble this fillet welded joint is numerically considered and its inherent deformations are evaluated.(2) To predict the welding induced buckling in the production of ship panel structure, a shell element model of considered ship panel is then employed for elastic FE analysis, in which inherent deformation evaluated beforehand is applied and large deformation is considered. The computed results obviously show welding induced buckling in the considered ship panel structure after welding. With its instability and difficulty for straightening, welding induced buckling prefers to be avoided whenever it is possible.  相似文献   

4.
Ship impact against offshore floating wind turbine (OFWT) has been identified as one of the major hazards with the development of OFWTs. The dynamic responses of OFWTs under ship impact should be taken into consideration during the design phase. This paper addresses a study on the dynamic responses of an OFWT in ship collision scenarios. Firstly, a mathematical model for external mechanism of ship-OFWT collision scenario is developed. Secondly, this model is combined with an in-house programme, DARwind, which can be used to predict nonlinear dynamic responses of whole OFWT system in time-domain. With the newly combined analysis tool, simulation cases for different scenarios are conducted to investigate the nonlinear dynamic responses of OFWT system, including the cases of still water condition, wave-only condition and wind-wave condition. It is shown that in still water condition, the ship impact will more obviously change the responses of motions and mooring system, compared with those in wave and wave-wind conditions. In the wave-only condition, these motions responses of platform are suppressed by wave effect, but the tower vibration and tower top deformation are sensitive to ship collision. For the wave-wind combined condition, the motions increment in surge and pitch due to ship collision becomes smaller than that of wave-only condition, but yaw motion has a considerable variation compared with those of the other two conditions. Additionally, the blade tip deformation increment due to ship collision are analyzed and it is found that the edgewise tip deformation got more obvious increment than that of flapwise. To further asses the safety of OFWT, the acceleration at nacelle are analyzed because some equipment might be sensitive to acceleration. The analysis results indicate that even though the OFWT structure doesn't get critical damage by ship impact, the equipment inside may still fail to work due to the high value of acceleration induced by ship impact. The research outcomes can benefit the safety design of OFWT in the engineering practice.  相似文献   

5.
The paper presents a simplified analytical method to examine the crushing resistance of web girders subjected to local static or dynamic in-plane loads. A new theoretical model, inspired by existing simplified approaches, is developed to describe the progressive plastic deformation behaviour of web girders. It is of considerable practical importance to estimate the extent of structural deformation within ship web girders during collision and grounding accidents. In this paper, new formulae to evaluate this crushing force are proposed on the basis of a new folding deformation mode. The folding deformation of web girders is divided into two parts, plastic deformation and elastic buckling zones, which are not taken into account for in the existing models. Thus, the proposed formulae can well express the crushing deformation behaviour of the first and subsequent folds. They are validated with experimental results of web girder found in literature and actual numerical simulations performed by the explicit LS-DYNA finite element solver. The elastic buckling zone, which absorbs almost zero energy, is captured and confirmed by the numerical results. In addition, the analytical method derives expressions to estimate the average strain rate of the web girders during the impact process and evaluates the material strain rate sensitivity with the Cowper-Symonds constitutive model. These adopted formulae, validated with an existing drop weight impact test, can well capture the dynamic effect of web girders.  相似文献   

6.
A mechanical model of visco-elastic material is established in order to investigate viscous effect in dynamic growing crack-tip field of mode Ⅱ. It is shown that in stable creep growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, the stress and strain have the same singularity, namely, (σε) ∝r^-1/(n-1). The asymptotic solutions of separatied variables of stress, stain and displacement in crack-tip field are obtained by asymptotic analysis, and the results of numerical value of stress and strain in crack-tip field are obtained by shooting method. Through numerical calculation, it is shown that the near-tip fields are mainly governed by the creep exponent n and Mach number M. By the asymptotic analysis to the crack-tip field, the fracture criterion of mode Ⅱ dynamic growing crack of visco-elastic materials is put forward from the point of view of strain.  相似文献   

7.
A mechanical model is established for mode Ⅱ interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic solutions of the stresses and strains of near tip-crack are got. It was shown that in stable creep growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, the stress and strain have the same singularity and there is not the oscillatory singularity the field. Through numerical calculation, it is shown that the frictional coefficient η notably influence the crack-tip field.  相似文献   

8.
应用固有应变法计算焊接变形时材料模型的选择研究   总被引:1,自引:0,他引:1  
分别采用理想弹塑性模型和双线性强化模型,推导出各自的固有应变计算公式,研究不同材料模型对于焊接结构变形的影响。研究结果表明,两种固有应变计算公式所预测的变形结果之间相对误差较小,即不同材料模型的选择对预测结构焊接变形的影响可以忽略。  相似文献   

9.
大型复杂船体分段焊接变形研究   总被引:1,自引:0,他引:1  
为了预估大型复杂船体分段的焊接变形,运用热弹塑性法计算典型结构的焊接变形,得出典型船体分段的固有应变,采用固有应变法计算该船体分段焊接变形,并与实测结果进行对比验证。结果表明:采用固有应变法计算大型复杂船体分段的焊接变形是可行的;船体分段焊接变形呈现整体外张的趋势,且两舷侧边缘位置的焊接变形量最大。  相似文献   

10.
Experimental drop weight impact tests are performed to examine the dynamic response of web girders in a one-tenth scaled tanker double hull structure struck laterally by a knife edge indenter. The small stiffeners of the full-scale prototype are smeared in the small-scale specimen by increasing the thicknesses of the corresponding plates. The plastic response is evaluated at two impact velocities and the impact location is chosen between two web frames to assure damage to the outer shell plating and the stringers. The laboratory results are compared with numerical simulations performed by the LS-DYNA finite element solver. In the simulations, the strain hardening of the material is defined using experimental data of quasi-static tension tests and the strain rate sensitivity is evaluated using standard coefficients of the Cowper–Symonds constitutive model. The experimental permanent deflection and shape of the deformation show a good agreement with the collision simulations. It is found that the crushing resistance of the specimens is determined by the deformation mechanism of the stringers. Thus, the deformation process is described and compared with theoretical deformation modes for web girders subjected to large in-plane quasi-static loads. Additionally, the influence of the stiffeners on the shape of the deformation of the stringers is illustrated through simulations of stiffened structural elements.  相似文献   

11.
空中爆炸下舰船桅杆结构变形及破裂的数值模拟   总被引:1,自引:0,他引:1  
对某舰的桅杆结构及相关甲板,用Lagrange单元进行模拟,桅杆周围、内部的空气用Euler单元进行模拟,Lagrange单元和Euler单元耦合界面采用一般耦合方法。运用动力有限元软件MSC/DYTRAN中的多欧拉-拉格朗日耦合方法,欧拉方程求解时使用具有二阶精度的Roe求解器,用MSC/PATRAN进行前后处理,模拟出了桅杆结构在空中爆炸作用下的变形及破裂。在破口处,冲击波传入桅杆内部,使内部空气压力发生变化。数值分析表明,应变率对结构非线性变形影响较大,计算中应当予以考虑。  相似文献   

12.
预测船体分段焊接变形方法概述   总被引:5,自引:1,他引:4  
船体分段在焊接过程中产生的焊接变形会使船体结构强度降低,精确预测和控制焊接变形是现代造船工艺的要求.焊接变形分析方法包括实验法、解析法、数值分析法、等效载荷法等,常用的是后两种方法.数值分析法采用热弹-塑性有限元模型精确模拟焊接现象,但计算工作量大;等效载荷法计算焊接区域的固有应变,并将其转化为等效载荷,进而应用弹性有限元分析求得整个结构的焊接变形.  相似文献   

13.
王留永 《机电设备》2011,28(3):40-41,55
采用变频器对炼铁高炉上料卷扬机老式串电阻调速系统进行了改造.介绍了高炉上料卷扬机原系统工作情况及系统改造方案、变频器的选用、控制系统的构成及功能等.改造后设备性能稳定,故障率明显减少,实现了高炉卷扬机的可靠平稳运行.  相似文献   

14.
为掌握素咬合止水桩土石围堰的变形规律,对咬合桩土石围堰不同位置、不同降水阶段、不同监测项目的监测数据进行分析总结。结果表明:围堰在第一次抽水期间变化较大,经过回灌、坡脚抛石、围堰加宽加固后,第二次抽水期间围堰变化趋势明显减缓;围堰中部的变形最大,靠岸位置的变形稍大,岸坡位置在整个抽水期保持稳定;同一位置附近的不同监测项目,其增长趋势基本一致。经过分析,最终确定围堰降水速率为400~500 mm/d最为合理,既能保证围堰的安全又能在一定程度上加快降水速度从而确保工期。  相似文献   

15.
The deformation of boat hull bottom panels during the initial phase of slamming is studied analytically using a linear elastic Euler–Bernoulli beam as a representation of the cross section of a bottom panel. The slamming pressure is modeled as a high-intensity peak followed by a lower constant pressure, traveling at constant speed along the beam. The problem is solved using a Fourier sine integral transformation in space and a Laplace–Carson integral transformation in time. Deflection and bending moment as functions of time and position for different speeds, bending stiffnesses, etc. are given. In particular the effect of slamming load traveling speed on structural response of the simplified bottom structure is investigated. It is found that rather large deflections and bending moments are encountered at certain speeds of the pressure, which suggests that bottom panels may benefit from tailoring their stiffness and mass properties such that loads are reduced. This would vary with boat particulars and operation (deadrise angle, mass, speed, sea state, etc). The importance of the high-intensity pressure peak often encountered during slamming is also studied. It is seen that for relatively slow moving slamming loads the pressure peak has little influence. However, for faster moving loads its influence can be significant.  相似文献   

16.
采用有限元方法研究了背压对1100Al等径角挤压的影响.分析了坯料的变形、等效应变分布、最大主应力及变形载荷的变化.模拟结果表明,通过在出口通道施加背压,提高了坯料充填模具外侧拐角的能力,使得坯料横截面上等效应变分布更加均匀;坯料在变形过程中的最大主应力降低;但变形载荷随背压的增加不断增加.分析得出,施加适当的背压有助于提高坯料的变形均匀性,降低坯料表面的开裂倾向.  相似文献   

17.
本文提出3种数据处理方法分析均匀来流中柔性立管的初始阻力特性。首先通过分析柔性立管在均匀来流中的变形及振动情况,分离出立管流向的初始变形对应的弯曲应变。根据复杂梁的弯曲变形理论,建立起弯曲应变与平均阻力之间的微分方程。随后,针对试验中获取的立管轴向力及立管表面弯曲应变,提出计算平均阻力的数据处理方法,并进行算例验证与分析。最终使用提出的数据处理方法分析试验数据,得到立管表面各截面处的阻力分布。  相似文献   

18.
A mechanical model of a fracturing viscoelastic material was developed to investigate viscous effects in a dynamically growing crack-tip field. It was shown that in the stable creep-growing phase,elastic deformation and viscous deformation are equally dominant in the near-tip field,and stress and strain have the same singularity,namely,(σ,ε ) ∝ r?1 /( n?1) . The asymptotic solution of separating variables of stress,stain and displacement in the crack-tip field was obtained by asymptotic analysis,and the resulting numerical value of stress and strain in the crack-tip field was obtained by the shooting method and the boundary condition of a mode I crack. Through numerical calculation,it was shown that the near-tip fields are mainly governed by the creep exponent n and Mach number M . When n →∞,the asymptotic solution of a viscoelastic material can be degenerated into that of Freund's elastic-ideally plastic material by analyzing basic equations.  相似文献   

19.
抗扭箱作为20000TEU超大型集装箱船的关键结构,由于其组成的板材较厚且与集装箱直接接触,因此需严格控制该结构的面外焊接变形。采用基于固有变形理论的弹性有限元分析,预测抗扭箱的焊接变形,且与实际测量结果比较吻合;通过设计大厚板的非对称X型坡口来控制面外变形,结果表明:采用非对称设计的X型焊接坡口更有利于减小变形,仅需一次翻身、提高生产效率。在不考虑装配间隙时,基于高效的热-弹-塑性有限元计算归纳出超厚板(40mm~85mm)的最佳正反面坡口深度比;而考虑实际生产中的装配间隙时,最佳正反面坡口深度比与板材厚板呈非线性关系。最后将考虑装配间隙时,优化的非对称坡口焊接接头应用到抗扭箱结构中,面外焊接变形减小明显,有利于指导船厂的实际生产。  相似文献   

20.
绝热剪切效应是材料破坏的重要机理之一.文章开展了动态冲击作用下的材料绝热剪切试验,计算了绝热条件下材料的塑性温度升高.建立了背水靶板的FEM全流固耦合模型,采用考虑了温度效应的Johnson-cook模型开展了爆炸破片侵彻舰船液舱舱壁过程的计算.结果表明:(1)材料在高应变率下的绝热温升不可忽略;(2)弹体侵彻背水靶板过程可分为4个典型阶段,分别为墩粗凿坑阶段、碰撞形成速度共同体阶段、绝热剪切阶段和扰动液体阶段;(3)考虑温度效应的剩余速度明显小于不考虑温度效应的剩余速度;速度较低时,是否考虑温度效应预测的剩余速度值差异较小,随着初始速度的增大,差异逐渐增大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号