首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
大跨斜拉桥上无缝线路纵向力的变化规律研究   总被引:1,自引:0,他引:1  
研究目的:大跨度斜拉桥结构复杂,为"塔-索-梁"空间组合结构,铺设无缝线路后,在荷载作用下,会形成"塔-索-梁-轨"耦合作用体系,其无缝线路力学传递机理极为复杂。以安庆长江大桥为例,通过建立大跨度钢桁梁斜拉桥上无缝线路"塔-索-梁-轨"空间耦合计算模型,分析不同体系温差、斜拉索修正弹性模量、纵向阻力模型及小阻力扣件的影响,为大跨度斜拉桥上无缝线路设计提供理论依据。研究结论:研究结果表明,随着斜拉桥体系温差变化幅度增大,钢轨伸缩附加力明显增加;斜拉索弹性模量修正与否对伸缩力和制动力影响较小,而对挠曲力影响较大;采用不同纵向阻力模型,伸缩力计算结果相差不大,挠曲力和制动力计算结果有较大差别;采用小阻力扣件可降低无缝线路纵向附加力,且应结合工程造价优先考虑在斜拉桥边跨和两侧引桥上铺设小阻力扣件方案。  相似文献   

2.
为研究钢轨伸缩调节器及小阻力扣件对大跨度公铁平层斜拉桥上梁轨相互作用规律的影响,以某大跨度公铁平层斜拉桥为研究对象,基于梁轨相互作用理论,建立大跨度公铁平层斜拉桥上无缝线路纵向力分析有限元模型,对不同工况下斜拉桥上梁轨相互作用规律进行研究。研究结果表明:在公路及铁路列车荷载作用下,对于大跨度公铁平层斜拉桥上无缝线路而言,在主桥两侧设置钢轨伸缩调节器,可大幅降低梁轨间的相互作用力,并能满足钢轨强度及稳定性限值要求;当在主桥两侧布置钢轨伸缩调节器且伸缩调节器基本轨一侧分别铺设100 m小阻力扣件时,钢轨总应力及纵向总压力分别为243.6 MPa, 716.9 kN,能够满足钢轨强度及轨道稳定性要求,且减少小阻力扣件的应用。  相似文献   

3.
安庆长江大桥为大跨度钢桁梁斜拉桥,桥上铺设无缝线路.大跨度斜拉桥结构复杂,为塔-索-梁空间组合体系,铺设无缝线路后,在荷载作用下,会形成"塔-索-梁-轨"藕合作用体系,其无缝线路力学传递机理较一般桥上无缝线路更为复杂.通过建立大跨度斜拉桥"塔-索-梁-轨"耦合模型,对安庆长江大桥桥上无缝线路纵向力进行计算分析,比选大跨...  相似文献   

4.
高速铁路多联大跨连续梁日益增多,而该情况下桥上无缝线路设计经验较少,探讨桥上无缝线路纵向附加力变化规律,对桥梁墩台及桥上无缝线路设计具有重要意义。建立了钢轨-扣件阻力-梁体-墩台一体化空间非线形有限元梁轨相互作用模型,并利用Ansys分析软件进行求解,计算分析了不同扣件阻力及不同桥跨布置工况下桥上无缝线路纵向附加力,并总结出纵向附加力变化规律,对多联大跨连续梁桥上无缝线路及桥墩设计有直接指导作用。  相似文献   

5.
颜乐  魏贤奎  王宇  王平 《铁道建筑》2014,(5):126-130
根据梁轨相互作用原理并结合拱桥上无缝线路的结构特点,建立了上承、中承、下承式拱桥上无缝线路的线桥墩一体化计算模型,采用ANSYS和FORTRAN语言相结合的方式,编制了拱桥上无缝线路通用计算软件ABCWR。以一普通桥梁为例进行了验证,计算结果符合桥上无缝线路基本原理。ABCWR可对桥上无缝线路的伸缩力、挠曲力、制动力及梁轨相对位移、墩台纵向力及位移进行计算分析,可用于铁路上各种拱桥和普通桥上无缝线路的设计和计算。  相似文献   

6.
随着我国高速铁路客运专线及城市轨道交通的建设,出现了多种形式大跨度特殊桥型.尼尔森体系拱以其结构及受力变形的优越性,得到越来越多的应用.运用梁轨相互作用基本原理,采用有限元方法,提出了尼尔森体系拱桥桥上无缝线路计算方法.以某城市轨道交通中尼尔森体系拱桥为例,运用该方法对不同工况下桥上无缝线路进行计算分析.分析表明:尼尔森体系提篮拱桥桥上无缝线路计算中,考虑拱肋及吊杆的温度变化对钢轨伸缩力计算结果影响不大;尼尔森体系提篮拱桥能有效地减小钢轨挠曲力,适宜于在大跨度铁路桥梁中应用;文章中的计算方法可以用于尼尔森体系提篮拱桥桥上无缝线路的计算.  相似文献   

7.
大跨度提篮拱桥上无缝线路设计关键技术研究   总被引:2,自引:0,他引:2  
研究目的:通过研究提篮拱桥在温度变化、列车荷载作用下的变形规律,并建立铺设无砟轨道的大跨度提篮拱桥无缝线路的非线性有限元计算模型,进行梁轨相互作用分析,计算铺设无砟轨道的140 m跨径提篮拱桥上无缝线路变形、纵向力、伸缩位移、挠曲位移,为桥梁和无缝线路设计检算提供支持.研究结论:在计算提篮拱桥的伸缩力时,可采用与常见简支梁或连续梁相同的方法计算梁的伸缩位移量;在列车荷载作用下提篮拱产生的最大挠曲位移明显小于伸缩位移,钢轨挠曲力较钢轨伸缩力小,挠曲力一般不控制轨道检算,但可能控制墩台的设计检算.  相似文献   

8.
为研究客货共线100 m简支钢桁梁桥墩纵向水平刚度限值,建立了线-桥-墩一体化空间有限元模型,研究了桥墩纵向水平刚度对无缝线路受力特性的影响规律,以钢轨强度、梁轨相对位移和断缝值为控制指标,提出了客货共线100 m简支钢桁梁桥墩纵向水平刚度取值。结果表明,随着简支钢桁梁桥墩纵向水平刚度的增大,钢轨伸缩附加力增大,钢轨制动附加力和梁轨相对位移降低;对于100 m简支钢桁梁,控制桥墩纵向水平刚度的指标是钢轨强度,且受钢轨温度变化幅值影响较大;综合考虑钢轨附加力和桥梁工程经济性,通过全桥铺设小阻力扣件可显著降低桥墩纵向水平刚度限值,此时桥墩纵向水平刚度建议为1 400 kN/(cm·线);研究成果可为100 m简支钢桁梁的桥墩设计提供参考。  相似文献   

9.
王伟华 《中国铁路》2023,(4):100-107
为探究多联连续刚构桥与无缝线路相互作用规律,研究梁轨相互作用,建立城际铁路4×40 m连续刚构桥与无缝线路有限元计算模型,分析不同体系刚度、桥墩沉降对钢轨纵向力、扣件垂向力、桥墩附加力的影响。研究结果表明:刚构桥体系刚度增加有利于无缝线路受力,随着体系纵向刚度的增加,无缝线路伸缩力与制动力均降低,制动力所受的影响更大,伸缩力所受影响不明显。温度工况下路桥过渡处桥墩受附加力最不利,其余联桥墩附加力基本相同;断轨工况下断轨所在两联桥墩受力最不利,桥墩附加力向远端逐渐衰减。钢轨与扣件受力随着桥墩沉降量的增加而线性增大,次边墩沉降引起的扣件拉力值更大,在运营过程中应重点关注。研究成果可为多联4×40 m连续刚构桥铺设无缝线路提供理论指导。  相似文献   

10.
研究目的:大跨度斜拉桥结构复杂,为"塔-索-梁"空间组合结构,在荷载作用下,其无缝线路梁轨相互作用极为复杂。本文以一座铁路常用双塔钢桁斜拉桥为例,基于梁轨相互作用原理,建立斜拉桥上无缝线路纵向力计算模型,分析主塔墩温差、斜拉索温差、主塔墩刚度、主梁刚度及结构支撑体系对钢轨伸缩力的影响,为大跨度斜拉桥上无缝线路设计提供理论依据。研究结论:(1)随着主塔墩温差增大,钢轨伸缩力减小,主塔墩温差越大,主梁主跨竖向位移就越大;(2)随着斜拉索温差增大,钢轨伸缩力增大较小,但主梁主跨竖向位移急剧减小;(3)主塔墩刚度变化对钢轨伸缩力影响较小;(4)采用漂浮体系时,钢轨伸缩力与半漂浮体系几乎一致,采用塔梁固定支撑和塔梁固结体系时,主梁左端梁缝处的伸缩力减小,但主梁右端梁缝处的钢轨伸缩力反而增大,因此在铁路大跨斜拉桥设计中建议不采用这两种支撑体系;(5)该研究成果可指导大跨度斜拉桥无缝线路设计。  相似文献   

11.
随着桥梁跨度、联长的不断增加,复杂的梁轨相互作用给桥上无缝线路设计带来了巨大挑战。本文在总结桥上无缝线路计算理论和求解模型的基础上,以某长联大跨桥上无缝线路为例,对其力学特性和结构设计进行了系统研究。研究表明:(1)长联大跨桥上无缝线路纵向附加力较大,钢轨强度往往难以满足规范要求;(2)梁端设置伸缩调节器,可有效减小梁轨相互作用,放散钢轨纵向力;(3)梁端设置抬枕装置可有效缓解梁缝增大导致的轨道刚度不均匀问题,需与伸缩调节器配套使用;(4)长联大跨桥上轨道设置健康监测系统十分必要。  相似文献   

12.
斜拉桥上无缝线路纵向相互作用理论及试验研究   总被引:1,自引:1,他引:0  
运用梁轨纵向相互作用机理,建立斜拉桥上无缝线路纵向力计算模型,以一座铁路常用双塔钢桁斜拉桥为例,对斜拉桥上无缝线路纵向相互作用规律进行理论和试验研究。分析结果表明:在主桥左右两端各铺设一组单向伸缩调节器,主桥上钢轨纵向力可得到有效的控制,现场试验测试的桥面纵向位移及钢轨伸缩力分布规律与理论计算基本相同,所建立模型可用于斜拉桥上无缝线路纵向相互作用分析;钢轨挠曲力计算时,可在斜拉桥主跨及其邻跨上布置荷载,且不必考虑列车入桥方向的变化;钢轨伸缩调节器可有效减弱列车制动荷载下的梁轨相互约束作用,减小线路受力变形。  相似文献   

13.
为探讨大跨度斜拉桥上无缝线路纵向受力与变形规律,以一座多线预应力混凝土斜拉桥为例,采用有限元法建立了"塔-索-梁-轨"空间耦合有限元模型,分析了温度荷载、列车荷载以及制动荷载对桥上无缝线路纵向受力与变形的影响。结果表明:当桥塔温度变化时,钢轨伸缩力、钢轨纵向位移和桥梁的纵向位移均无明显变化,钢轨伸缩力最大幅值出现在连续梁两部,并在简支梁梁缝处出现峰值;在列车荷载作用下,各条线路的钢轨挠曲力和钢轨纵向位移随着距加载线路距离的增大而逐渐减小,钢轨挠曲力最大幅值出现在连续梁端部;在制动荷载作用下,钢轨制动力最大幅值出现在连续梁端部,并在加载的起点与终点出现峰值突变,加载的起点或终点与连续梁端部重合时为最不利位置。研究结果可为大跨度斜拉桥上无缝线路设计提供理论参考。  相似文献   

14.
大跨度连续梁拱组合桥梁轨互制特征   总被引:1,自引:1,他引:0  
为研究大跨度连续梁拱组合桥梁轨相互作用特征,以梅汕线上某(34+160+34)m刚架系杆拱钢箱连续梁组合桥为背景,采用理想弹塑性模型模拟线路纵向阻力,建立"轨-拱-梁-墩"一体化空间模型,对钢轨纵向力的分布规律进行分析,对是否考虑轨道作用下的主梁应力、梁端转角、墩底纵向反力进行比较。结果表明:连续梁拱组合桥远离固定支座的梁端处钢轨纵向力较大,其中最大伸缩应力达到114.0 MPa,在不设钢轨伸缩调节器时钢轨强度仍满足要求;轨道结构对温度荷载和制动力作用下的主梁应力影响较大;轨道结构对梁端转角及墩底纵向反力的分配亦有较大影响。  相似文献   

15.
对于大跨、大坡道和小半径曲线桥梁,梁轨相互作用关系更加复杂、附加作用力及断轨时的断缝值也较大,给桥上铺设无缝线路结构带来困难。为研究高速铁路大跨刚构-连续组合梁桥无缝线路铺设方案,以新建贵广铁路圣泉1号特大桥为工程背景,建立线-桥-墩一体化有限元计算模型,分析不同结构方案下线、桥纵向受力情况。研究结果表明:对于圣泉1号双线特大桥桥上无缝线路,铺设小阻力扣件、钢轨伸缩调节器、调节锁定轨温等常规设计方案无法同时满足强度、稳定性、断缝值等检算指标的需求,建议采取"伸缩调节器+道砟胶"的技术方案。  相似文献   

16.
跨兴闫公路特大桥无缝线路综合试验研究   总被引:1,自引:0,他引:1  
跨兴闫公路特大桥无缝线路综合试验是秦沈客运专线跨区间无缝线路关键技术试验研究的内容之一,内容包括桥墩纵向刚度、梁体温度变化、道床纵向阻力、伸缩力、挠曲力、梁轨纵向相对位移等测试。总结了各项试验内容的试验方法和试验结果,采用实测参数计算了伸缩力和挠曲力的理论值。结果表明:理论值与试验值基本一致;试验经验和测试结果对于验证桥上无缝线路的理论分析模型,提高桥上无缝线路的设计水平具有重要意义。  相似文献   

17.
德大铁路黄河特大桥主桥钢梁结构设计   总被引:1,自引:1,他引:0  
德大铁路黄河特大桥主桥为1-(120+4×180+120)m下承式变高度连续钢桁梁,需要满足近期单线、远期双线的Ⅰ级铁路行车要求,具有跨度大、结构高的特点。首先介绍主桥的总体布置,而后对设计中采用的变高度"N"形主桁、正交异性整体钢桥面板、空间上平纵联、阻尼器、桥面柔性防水保护层、钢轨伸缩调节器、钢梁防腐涂装要求都作了详尽的说明。最后对钢梁的悬臂施工过程、70t固定式桅杆起重机进行介绍。  相似文献   

18.
准朔铁路黄河特大桥拱上简支T梁支座布置研究   总被引:1,自引:0,他引:1  
研究目的:准朔铁路黄河特大桥是朔州至准格尔新建铁路重要工程,大跨度上承式拱桥拱上桥墩纵向位移由桥墩和拱肋变形两部分组成,拱上简支T梁支座布置对拱肋结构的受力影响较大,因此需要通过合理的支座布置方案降低拱上高墩的纵向水平位移,降低纵向水平力对拱肋产生的不利影响。研究结论:(1)相邻桥墩纵向最大相对位移发生在交界墩与拱脚G1和G12号墩之间;(2)拱脚第一孔简支梁梁端需要采取大位移量纵向活动支座和伸缩装置,并设置纵、横向防落梁措施;(3)大跨度拱上桥墩墩顶位移对桥上无缝线路的影响较大,桥上无缝线路应采取小阻力扣件来适应桥墩变形要求。  相似文献   

19.
桥墩纵向水平线刚度对桥上无缝线路设计的影响   总被引:4,自引:0,他引:4  
桥墩纵向水平线刚度是桥梁和无缝线路设计的关键技术参数,桥上无缝线路钢轨与墩台纵向力的分配以及梁、轨位移的大小很大程度上取决于桥墩纵向水平线刚度。结合工程实际,以客运专线常见的60 m 100 m 60m连续梁为例,分析桥墩纵向线刚度对钢轨、墩台纵向力及梁、轨位移的影响规律。  相似文献   

20.
(48+80+48)m连续梁桥与轨道系统地震响应规律研究   总被引:1,自引:1,他引:0  
为研究高速铁路连续梁桥-轨道系统地震响应规律,采用非线性弹簧模拟线路纵向阻力,建立考虑轨道及下部结构的(48+80+48)m连续梁桥-轨道系统仿真模型,分析温度、活载和制动作用下桥上无缝线路梁轨相互作用纵向力分布规律,在此基础上,研究地震作用下连续梁桥-轨道系统动力响应特性。研究表明:温度、活载及列车制动作用下梁轨相对位移、钢轨应力等均在桥台附近取得极大值,地震频谱特性对梁轨系统动力响应有很大的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号