共查询到20条相似文献,搜索用时 15 毫秒
1.
针对基于深度学习的短期交通流预测问题,揭示了时空相关性建模本质,分析了建模过程中涉及的多尺度时空特性、异质性、动态性、非线性等特点,明确了基于深度学习进行短期交通流预测的核心挑战,阐述了短期交通流预测涉及的外部信息整合、多步预测与单步预测以及单体预测与集成预测等相关问题;按照网格化和拓扑化2种交通流数据组织方式,分别综述了当前最新的基于深度学习的短期交通流预测研究方向。研究结果表明:针对网格化交通流数据,当前研究主要包含了基于2D图像卷积神经网络、基于2D图像卷积神经网络与循环神经网络相结合、基于3D图像卷积神经网络3种预测建模方法;针对拓扑化交通流数据,当前研究主要包含了基于1D因果图像卷积与卷积图神经网络相结合、基于循环神经网络与卷积图神经网络相结合、基于自注意力与卷积图神经网络相结合、基于卷积图神经网络的时空同步学习4种预测建模方法;总体上,基于深度学习方法进行短期交通流预测相较于采用时间序列和经典机器学习方法获得了预测准确性上的极大提升;未来,针对物理理论、知识图谱与深度学习相结合,构建多时空数据挖掘大模型以及轻量化、可解释性、模型结构自动化搜索等维度的相关探索将成为重要研究方... 相似文献
2.
风电功率预测对电力系统的稳定运行与经济调度至关重要。为充分挖掘历史数据中的有效信息以提高风电功率短期预测精度,提出一种基于卷积神经网络(convolution neural network,CNN)和长短期记忆(long short-term memory network,LSTM)网络模型的风电功率短期预测方法,利用CNN序列特征提取能力进行有效信息的提取,保留更长的有效记忆信息以解决梯度弥散问题,弥补了LSTM网络模型面对过长序列时出现不稳定与梯度消失现象的不足。用国内某风电场数据进行实验,预测结果表明文中提出的方法与反向传播神经网络和LSTM网络预测方法相比,具有更高的预测精度。 相似文献
3.
根据相空间延迟坐标重构理论,基于支持向量机强大的非线性映射能力和小波核函数的局部分析和特征提取能力,提出了一种基于小波支持向量机的电力系统短期负荷预测方法,并利用该方法对嵌入维数与预测性能的关系进行了探讨。仿真结果表明,该预测方法能精确地预测电力负荷,而且在电力负荷序列的最佳嵌入维数未知时也能取得比较好的预测效果,这一结论预示着小波支持向量机是一种预测电力系统短期负荷的有效方法。 相似文献
4.
精准且快速的短时交通流预测是智能交通发展的重要组成部分.本文针对当前交通流预测模型不能充分提取交通流数据的时空特征、预测性能容易受到外界干扰因素影响的问题,提出一种基于深度学习的短时交通流预测模型,该模型结合卷积神经网络(Convolutional Neural Network,CNN)与支持向量回归分类器(Support Vector Regression,SVR)的特点:在网络底层应用CNN进行交通流特征提取,并将提取结果输入到SVR回归模型中进行流量预测.为验证模型的有效性,取G103国道的实际交通流量数据进行试验.结果表明,提出的预测模型与传统的预测模型相比具有更高的预测精度,预测性能提高了11%,是一种有效的交通流预测模型. 相似文献
5.
城市停车已逐步实现信息化和动态化管理,本文对动态管理模式下大范围路侧泊位占有率预测方法进行研究.在收集美国旧金山492万条停车交易数据的基础上,利用可同时提取数据空间关联和时序趋势特征的卷积长短时记忆神经网络(Convolutional LSTM Network,ConvLSTM),分别构建考虑停车费率和时限动态变化的有政策模型,和没有动态管理信息输入的无政策模型.结果显示,有政策模型的训练效率和预测精度会显著提升.在政策平稳阶段,两种模型均能够有效预测泊位占有率;在政策发生变化时段,无政策模型的预测误差出现激增,但有政策模型的预测误差依然保持平稳,表明本文提出的方法能够很好地应对动态管理模式下停车需求的变化. 相似文献
6.
城市停车已逐步实现信息化和动态化管理,本文对动态管理模式下大范围路侧泊位占有率预测方法进行研究.在收集美国旧金山492万条停车交易数据的基础上,利用可同时提取数据空间关联和时序趋势特征的卷积长短时记忆神经网络(Convolutional LSTM Network,ConvLSTM),分别构建考虑停车费率和时限动态变化的有政策模型,和没有动态管理信息输入的无政策模型.结果显示,有政策模型的训练效率和预测精度会显著提升.在政策平稳阶段,两种模型均能够有效预测泊位占有率;在政策发生变化时段,无政策模型的预测误差出现激增,但有政策模型的预测误差依然保持平稳,表明本文提出的方法能够很好地应对动态管理模式下停车需求的变化. 相似文献
7.
8.
目前,高速公路交通管控部门对准确交通数据的掌握还存在局限性,预测值也不够精确,为给出行者提供更好的交通引导,必须采用新方法预估误差较小的交通流量数据.提出一种同时考虑时间与空间因素的卷积-双向长短期记忆(CNN-BiLSTM)模型,将具有空间局部特征提取能力的卷积神经网络(CNN)和具有能同时考虑前后方向长时间信息的双向长短期记忆(BiLSTM)相结合,将其用于预测更能体现随时空变化不断波动的交通流量.以一些简单的基准方法作为对比模型,采用均方误差(MSE)等5项评估指标,在美国加州高速公路数据集上进行训练和测试,结果表明:由CNN-BiLSTM得出的预测结果更符合实际交通流量的变化趋势,在高峰期和波动较大时间段均能较好地拟合真实值,灵敏度较高. 相似文献
9.
10.
年电力负荷预测的准确性对电力系统的经济效益和社会效益具有重要作用。灰色神经网络(GNN)是一种创新的智能计算方法,在实际中广泛应用。尤其在预测问题方面具有极大的潜力。作为一种新型的启发式和进化算法,果蝇优化算法(FOA)具有易理解和快速收敛到全局最优解的优点。为提高预测性能,提出一种以GNN为基础的年电力负荷预测模型,使用FOA自动确定GNN模型的相应参数值,提高模型的稳定性和预测精度。通过利用中国的年用电量为实例,计算结果表明,GNN结合FOA(GNN-FOA)优于GNN,广义回归神经网络(GRNN),最小二乘支持向量机(LSSVM)和回归模型等其他替代方法。 相似文献
11.
随着区域经济的增长, 公路通行需求呈爆炸式增长。 高速公路作为区域的主干道和大动脉, 路网通行能力和通行需求之间的矛盾越来越突出, 拥堵成为高速公路运营管理最大的痛点之一。 高速道路运营单位、 政府管理部门亟需一种实时性强、 可靠性高的路况分析技术为拥堵治理提供服务。 传统的分析技术 (如机器学习、 统计学方法等) 无法满足处理海量的多源异构数据的需求。 随着近十年来大数据技术和 GPU 计算能力的发展, 深度学习技术这门新信息技术日益成熟, 拥有强大的数据处理能力。 在交通态势预测领域, 借助深度学习技术处理海量的交通数据可以实现道路通畅度的高精准、 高可靠性预测, 再辅以主动管控和车路协同技术来提升高速路网的通畅性和安全性。 文章首先简要介绍深度学习技术的发展历史和交通态势预测领域的发展现状, 再浅析深度学习在智慧高速中的应用场景, 最后分析深度学习技术面临的隐患并进一步对深度学习进行展望。 相似文献
12.
高速铁路短期客流预测是铁路运输系统的重要组成部分。无论是对列车开行方案的制定,还是对如何采取正确的营销策略,都具有重大的现实意义。通过混合经验模态分解方法和神经网络方法相结合的EMD-BPN方法来预测高速铁路短期客流量。组合方法主要分为三步:首先,使用经验模态分解方法将客流时间序列分解;其次,将IMFs作为BP神经网络的输入;最后,应用神经网络对客流量做出预测。数值实例表明,该方法对于高速铁路短期客流预测在精度和稳定性上都有良好的表现。 相似文献
13.
考虑铁路枢纽出租车客流需求量短时波动和历史时间序列等影响因素,为提升铁路枢纽站出租车需求量短时预测精度,提出了一维卷积神经网络(CNN)与长短时记忆神经网络(LSTM)的组合预测模型(CNN-LSTM)。采用人工计数法,获取铁路枢纽站出租车客流需求的时间序列数据,根据供需量平衡理论,建立理想条件下需求量短时计算模型。以标准化原始数据为CNN的输入,分别通过双层卷积和池化,提取原始数据特征向量输入特征,并以此作为LSTM的训练数据进行短时预测,将预测数据标准化还原后可得到匹配原始数据的预测数据。对比分析SARIMA、LSTM预测模型,构建的CNN-LSTM组合模型RMSE值有所降低,表明构建模型适用于铁路枢纽出租车需求量短时预测。 相似文献
14.
15.
本研究针对现有边坡沉降预测模型精度低、无法有效反映沉降值蕴含的时序信息等问题,提出基于门控深度循环信念网络(GDRBN)的边坡沉降混合预测模型。为提高训练效率,引入自适应学习率,并以广佛肇高速公路二期工程为实例,建立多种边坡沉降预测模型,并进行计算比较。研究结果表明:基于GDRBN的边坡预测模型的预测精度比GM、BP、RNN、DBN预测模型的分别提高了69%、54%、38%、26%,可为边坡预测提供更准确的计算方法。 相似文献
16.
17.
针对交通流时间序列,在深度学习的理论框架下,构建基于LSTM-RNN的城市快 速路短时交通流预测模型.根据交通流的时空相关性完成时间序列的重构,依靠模型训练对时 空关联特性进行识别和强化,兼顾精度和时效性确定神经网络深度,完成短时交通流预测模 型搭建.基于TensorFlow 的Keras 完成LSTM-RNN的逐层构建和精细化调参,利用路网实测数 据样本完成算法验证,实现模型本地保存并根据预测精度进行自适应更新.结果表明,本文所 采用的预测算法精度高,受训练样本量的限制较小,实时性、扩展性和实用性均得到有效提高. 相似文献
18.
运用长短期记忆神经网络(LSTM)对电池的电压、电流、荷电状态(SOC)进行预测。考虑驾驶行为对电池组工作状态的影响,确定了含加速度、车速、电压、电流、SOC在内的多参数LSTM模型;根据中国亿维新能源车辆云平台数据,采用Adam优化算法完成对LSTM模型的训练、测试与预测。结果表明:多参数LSTM模型可有效预测电池的SOC和电压变化状态,电流均方误差由14.848%降到3.192%。 相似文献
19.
针对机场场面交通可获数据的局限性,为精准提取机场交通数据时空特征及预测场面交通流量。首先,基于推出控制理论,建立机场场面运行数值仿真模型,得到因数据局限无法获取的预测指标;其次,搭建卷积神经网络(CNN)与长短期记忆网络(LSTM)组合预测模型提取时空特征;最后,以河南郑州机场为例进行试验验证,比较模型在不同训练数据量下的预测性能与误差指标,结果表明基于仿真指标的预测模型预测结果精确度高且性能稳定。 相似文献