首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Activities of the naturally occurring, short-lived and highly particle-reactive radionuclide tracer 234Th in the dissolved and particulate phase were measured at three shallow-water stations (maximum water depths: 15.6, 22.7 and 30.1 m) in Mecklenburg Bay (south-western Baltic Sea) to constrain the time scales of the dynamics and the depositional fate of particulate matter. Activities of particle-associated (> 0.4 μm) and total (particulate + dissolved) 234Th were in the range of 0.08–0.11 dpm L− 1 and 0.11–0.20 dpm L− 1, respectively. The activity ratio of total 234Th and its long-lived and conservative parent nuclide 238U was well below unity (range: 0.09–0.19) indicating substantial radioactive disequilibria throughout the water column, very dynamic trace-metal scavenging and particle export from the water column at all three stations. For the discussion the 234Th data of this study were combined with previously published water-column 234Th and particulate-matter data from Mecklenburg Bay (Kersten et al., 1998. Applied Geochemistry 13, 339–347). The resulting average vertical distribution of total 234Th/238U disequilibria was used to estimate the depositional 234Th flux to the sediment. There was a virtually constant net downward flux of 234Th of about 28 dpm m− 2 d− 1 leaving each water layer of one meter thickness. Thorium-234-derived net residence times of particulate material regarding settling from a given layer in the water column were typically on the order of days, but with maximum values of up to a couple of weeks. Based on an average ratio of particulate matter (PM) to particle-associated 234Th a net flux of about 145 mg PM m− 2 d− 1 was estimated to leave each water layer of one meter thickness. The estimated cumulative water-column-derived particulate-matter fluxes at the seafloor are higher by a factor of about 2 than previously published sediment-derived estimates for Mecklenburg Bay. This suggests that about half of the settling particulate material is exported from the study area and/or subject to processes such as mechanical breakdown, remineralisation and dissolution. Lateral particulate-matter redistribution and particle breakdown in the water column (as opposed to the sediment) seem to be favoured by (repeated) particle resuspension from and resettling to the seafloor before ultimate sedimentary burial. The importance of net lateral redistribution of particulate material seems to increase towards the seafloor and be particularly high within the bottommost few meters of the water column.  相似文献   

2.
Carbon cycling in the Weddell Sea was investigated during the ANT X/7 cruise with `FS Polarstern' December 1992–January 1993. Samples were taken on a cross section from Kapp Norvegia to Joinville Island, and on a section from the Larsen Ice Shelf to the northeast. The following quantities were measured: total carbon dioxide (TCO2), fluorescence from humic substances and total organic carbon. The distribution of TCO2 was strongly positively correlated to the time elapsed since the various water masses were last ventilated. In general, humic substance fluorescence was positively correlated with TCO2, with the exception of the productive part of the western Weddell Sea, where the correlation was negative in the surface mixed layer. The increased fluorescence at the surface is suggested to be a result of biological production. The distribution of total organic carbon showed less structure, since this quantity includes a particulate component, which is subject to dispersion processes different from those of the dissolved components TCO2 and humic substances. The mean total organic carbon concentration below the surface mixed layer was 50 μmol l−1. At some stations, a steep TOC maximum around 2000 m depth was observed. This was interpreted to result from mass sinking of phytoplankton blooms. Total organic carbon had a maximum in surface water, and at some stations also a second subsurface maximum. In the Warm Deep Water (WDW), TCO2 and fluorescence had their maximum values, while total organic carbon tended to be low. In low productivity surface water in the eastern part of the Kapp Norvegia–Joinville Island section, the lowest flourescence was found. Surface water is eventually formed from Warm Deep Water, which had the highest fluorescence values, and therefore it is concluded that humic substances were removed in situ from surface water. In the central area of the Weddell Sea, TCO2 and fluorescence showed the highest Warm Deep Water maxima, while total organic carbon was low. The Warm Deep Water in this area is part of the so-called Central Intermediate Water which circulates for a long time within the Weddell Gyre. Reduced total organic carbon, which coincides with the most pronounced Central Intermediate Water characteristics, and high TCO2 can thus both be accounted for by continued degradation of organic matter in this water mass. The associated fluorescence maximum implies that humic substances are also produced during mineralisation. Recently formed bottom water, by contrast, could be seen as patches of low TCO2, low fluorescence and high total organic carbon along the western slope of the Weddell Sea.  相似文献   

3.
Particulate organic matter (POM), nutrients, chlorophyll-a (CHL) and primary production measurements were performed in the upper layer of three different regions (cyclonic, anticyclonic and frontal+peripherial) of the NE Mediterranean Sea in 1991–1994. Depth profiles of bulk POM exhibited a subsurface maximum, coinciding with the deep chlorophyll maximum (DCM) established near the base of the euphotic zone of the Rhodes cyclone and its periphery, where the nutricline was situated just below the euphotic zone for most of the year. Moreover, the POM peaks were broader and situated at shallower depths in late winter–early spring as compared to its position in the summer–autumn period. Under prolonged winter conditions, as experienced in March 1992, the characteristic POM feature disappeared in the center of the Rhodes cyclone, where the upper layer was entirely occupied by nutrient-rich Levantine deep water. Deep convective processes in the cyclonic gyre led to the formation of vertically uniform POM profiles with low concentrations of particulate organic carbon (POC) (2.1 μM), nitrogen (0.21 μM), total particulate phosphorus (PP) (0.02 μM) and chlorophyll-a (0.5 μg/L) in the euphotic zone. Though the Levantine deep waters ascended up to the surface layer with the nitrate/phosphate molar ratios (28–29) in March 1992, the N/P molar ratio of bulk POM in the upper layer was low as 10–12, indicating luxury consumption of phosphate during algal production. Depth-integrated primary production in the euphotic zone ranged from 38.5 for oligotrophic autumn to 457 mg C m−2 day−1 for moderately mesotrophic cool winter conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号