共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
鉴于支持向量机的优秀特性,将其应用在金属磁记忆检测中,构造基于梯度值的裂纹标识量,实现对裂纹的定位和裂纹程度的标定,并通过有限元仿真,计算裂纹和裂纹程度及对应的漏磁信号,得到训练样本和测试样本,并训练支持向量机。仿真结果表明:应用支持向量机实现铁磁构件裂纹识别是可行的。 相似文献
3.
4.
5.
为了实现有效的海上监管和响应,提高舰船监管效率,降低人力成本,提出基于遗传算法优化支持向量机的舰船目标识别分类方法。以HU矩为舰船目标的特征描述子,在舰船目标图像内,提取具备旋转、尺度与平移不变性的舰船目标特征矩;利用遗传算法,优化支持向量机的惩罚因子与核参数;在参数优化后的支持向量机内,输入舰船目标特征矩样本,输出舰船目标识别分类结果。实验证明,该方法可有效提取舰船目标特征矩;经过参数优化后的支持向量机,可有效降低计算复杂度,加快检测目标识别分类效率,具备较优的舰船目标识别分类性能。该方法均可精准识别分类舰船目标。 相似文献
6.
基于K最近邻决策的支持向量机分类算法及仿真 总被引:2,自引:0,他引:2
将基于支持向量机(SVM)的分类方法和最近邻法(NN)相结合,提出了一种SVM-KNN的分类方法。通过SVM算法对训练样本进行训练并找出支持向量,在进行待识别样本判断时,当其与最优分类面距离大于某一给定阈值时采用SVM决策模型,否则运用K最近邻法决策其类别,从而减少SVM算法的误判概率。仿真实验结果显示,运用该算法无论对于合成数据还是真实数据,在分类精度上比单独的SVM都有较明显的提高。 相似文献
7.
8.
9.
10.
11.
目前的支持向量机解析方法,如SM0算法在一定程度上解决传统支持向量机实现方法需要高额存储空间的问题,而对支持向量数目的约减并末过多关注,算法的稀疏性有待进一步提高。该文将FOBa算法对特征进行约减的思想引入SMO算法中,对训练产生的作用甚微的支持向量进行约减,提出了稀疏SMO算法。实验结果表明算法在提高预测速度上具有一定的竞争力。 相似文献
12.
13.
对传统的两个线性组合预测模型进行了研究,提出了一个新的线性组合预测模型Ⅲ。为提高精度,提出了支持向量机非线性的组合预测模型。以青岛港历年集装箱吞吐量为例,与单一预测方法、线性组合预测进行对比,结果表明支持向量机非线性的组合预测方法比较精确。 相似文献
14.
基于支持向量机的船舶柴油机故障诊断 总被引:2,自引:0,他引:2
介绍了支持向量机(SVM)的机理,应用SVM对船舶电站主柴油机进行故障诊断,研究了SVM参数的选择方法,仿真结果表明,SVM具有较好的诊断效果和较强的抗噪声能力;对复合故障样本诊断准确度较RBF神经网络高. 相似文献
15.
16.
17.
18.
19.
基于粒子群算法的支持向量机参数优化方法的研究 总被引:2,自引:0,他引:2
支持向量机(Support vector machines),作为一种新兴的学习机器,具有广阔的发展前景,但其性能依赖于参数选择,并且在实际工程中,这个问题一直没有得到较好的解决,在很大的程度上限制了它的应用.本文对粒子群算法(Particle swarm optimizer)进行改进,通过每次迭代过程中,增加粒子个数的方法扩大粒子的搜索范围,防止粒子陷入局部最优.将改进的粒子群算法用于支持向量机参数选择中,并且在非线性系统模型辨识中进行仿真验证,同传统方法相比,在时间和辨识精度上都有了很大的提高,为解决SVM的参数选取问题提供了一条有效的途径. 相似文献
20.