首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Accurate estimation of travel time is critical to the success of advanced traffic management systems and advanced traveler information systems. Travel time estimation also provides basic data support for travel time reliability research, which is being recognized as an important performance measure of the transportation system. This paper investigates a number of methods to address the three major issues associated with travel time estimation from point traffic detector data: data filling for missing or error data, speed transformation from time‐mean speed to space‐mean speed, and travel time estimation that converts the speeds recorded at detector locations to travel time along the highway segment. The case study results show that the spatial and temporal interpolation of missing data and the transformation to space‐mean speed improve the accuracy of the estimates of travel time. The results also indicate that the piecewise constant‐acceleration‐based method developed in this study and the average speed method produce better results than the other three methods proposed in previous studies. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
Regardless of existing types of transportation and traffic model and their applications, the essential input to these models is travel demand, which is usually described using origin–destination (OD) matrices. Due to the high cost and time required for the direct development of such matrices, they are sometimes estimated indirectly from traffic measurements recorded from the transportation network. Based on an assumed demand profile, OD estimation problems can be categorized into static or dynamic groups. Dynamic OD demand provides valuable information on the within-day fluctuation of traffic, which can be employed to analyse congestion dissipation. In addition, OD estimates are essential inputs to dynamic traffic assignment (DTA) models. This study presents a fuzzy approach to dynamic OD estimation problems. The problems are approached using a two-level model in which demand is estimated in the upper level and the lower level performs DTA via traffic simulation. Using fuzzy rules and the fuzzy C-Mean clustering approach, the proposed method treats uncertainty in historical OD demand and observed link counts. The approach employs expert knowledge to model fitted link counts and to set boundaries for the optimization problem by defining functions in the fuzzification process. The same operation is performed on the simulation outputs, and the entire process enables different types of optimization algorithm to be employed. The Box-complex method is utilized as an optimization algorithm in the implementation of the approach. Empirical case studies are performed on two networks to evaluate the validity and accuracy of the approach. The study results for a synthetic network and a real network demonstrate the robust performance of the proposed method even when using low-quality historical demand data.  相似文献   

3.
It is widely recognized that precise estimation of road tolls for various pricing schemes requires a few pieces of information such as origin–destination demand functions, link travel time functions and users’ valuations of travel time savings, which are, however, not all readily available in practice. To circumvent this difficulty, we develop a convergent trial-and-error implementation method for a particular pricing scheme for effective congestion control when both the link travel time functions and demand functions are unknown. The congestion control problem of interest is also known as the traffic restraint and road pricing problem, which aims at finding a set of effective link toll patterns to reduce link flows to below a desirable target level. For the generalized traffic equilibrium problem formulated as variational inequalities, we propose an iterative two-stage approach with a self-adaptive step size to update the link toll pattern based on the observed link flows and given flow restraint levels. Link travel time and demand functions and users’ value of time are not needed. The convergence of the iterative toll adjustment algorithm is established theoretically and demonstrated on a set of numerical examples.  相似文献   

4.
Abstract

In this paper we discuss a dynamic origin–destination (OD) estimation problem that has been used for identifying time-dependent travel demand on a road network. Even though a dynamic OD table is an indispensable data input for executing a dynamic traffic assignment, it is difficult to construct using the conventional OD construction method such as the four-step model. For this reason, a direct estimation method based on field traffic data such as link traffic counts has been used. However, the method does not account for a logical relationship between a travel demand pattern and socioeconomic attributes. In addition, the OD estimation method cannot guarantee the reliability of estimated results since the OD estimation problem has a property named the ‘underdetermined problem.’ In order to overcome such a problem, the method developed in this paper makes use of vehicle trajectory samples with link traffic counts. The new method is applied to numerical examples and shows promising capability for identifying a temporal and spatial travel demand pattern.  相似文献   

5.
The cost of nation wide travel surveys is high. Hence in many developing countries, planners have found it difficult to develop intercity transportation plans due to the non availability of origin‐destination trip matrices. This paper will describe a method for the intercity auto travel estimation for Sri Lanka with link traffic volume data.

The paper outlines the rationale of selecting the district capitals of Sri Lanka as its “cities,” the methodology for selecting the intercity road network, determination of link travel times from express bus schedules and the location of link volume counting positions.

Initially, the total auto travel demand model is formulated with various trip purpose sub‐models. This model is finally modified to a simple demand model with district urban population and travel times between city pairs as the exogenous variables, to overcome statistical estimation difficulties. The final demand model has statistics within the acceptable regions.

The advantages of a simple model are discussed and possible extensions are proposed.  相似文献   

6.
Oversized vehicles, such as trucks, significantly contribute to traffic delays on freeways. Heterogeneous traffic populations, that is, those consisting of multiple vehicles types, can exhibit more complicated travel behaviors in the operating speed and performance, depending on the traffic volume as well as the proportions of vehicle types. In order to estimate the component travel time functions for heterogeneous traffic flows on a freeway, this study develops a microscopic traffic‐simulation based four‐step method. A piecewise continuous function is proposed for each vehicle type and its parameters are estimated using the traffic data generated by a microscopic traffic simulation model. The illustrated experiments based on VISSIM model indicate that (i) in addition to traffic volume, traffic composition has significant influence on the travel time of vehicles and (ii) the respective estimations for travel time of heterogeneous flows could greatly improve their estimation accuracy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
The paper presents a statistical model for urban road network travel time estimation using vehicle trajectories obtained from low frequency GPS probes as observations, where the vehicles typically cover multiple network links between reports. The network model separates trip travel times into link travel times and intersection delays and allows correlation between travel times on different network links based on a spatial moving average (SMA) structure. The observation model presents a way to estimate the parameters of the network model, including the correlation structure, through low frequency sampling of vehicle traces. Link-specific effects are combined with link attributes (speed limit, functional class, etc.) and trip conditions (day of week, season, weather, etc.) as explanatory variables. The approach captures the underlying factors behind spatial and temporal variations in speeds, which is useful for traffic management, planning and forecasting. The model is estimated using maximum likelihood. The model is applied in a case study for the network of Stockholm, Sweden. Link attributes and trip conditions (including recent snowfall) have significant effects on travel times and there is significant positive correlation between segments. The case study highlights the potential of using sparse probe vehicle data for monitoring the performance of the urban transport system.  相似文献   

8.
With the recent increase in the deployment of ITS technologies in urban areas throughout the world, traffic management centers have the ability to obtain and archive large amounts of data on the traffic system. These data can be used to estimate current conditions and predict future conditions on the roadway network. A general solution methodology for identifying the optimal aggregation interval sizes for four scenarios is proposed in this article: (1) link travel time estimation, (2) corridor/route travel time estimation, (3) link travel time forecasting, and (4) corridor/route travel time forecasting. The methodology explicitly considers traffic dynamics and frequency of observations. A formulation based on mean square error (MSE) is developed for each of the scenarios and interpreted from a traffic flow perspective. The methodology for estimating the optimal aggregation size is based on (1) the tradeoff between the estimated mean square error of prediction and the variance of the predictor, (2) the differences between estimation and forecasting, and (3) the direct consideration of the correlation between link travel time for corridor/route estimation and forecasting. The proposed methods are demonstrated using travel time data from Houston, Texas, that were collected as part of the automatic vehicle identification (AVI) system of the Houston Transtar system. It was found that the optimal aggregation size is a function of the application and traffic condition.
Changho ChoiEmail:
  相似文献   

9.
A practical system is described for the real-time estimation of travel time across an arterial segment with multiple intersections. The system relies on matching vehicle signatures from wireless sensors. The sensors provide a noisy magnetic signature of a vehicle and the precise time when it crosses the sensors. A match (re-identification) of signatures at two locations gives the corresponding travel time of the vehicle. The travel times for all matched vehicles yield the travel time distribution. Matching results can be processed to provide other important arterial performance measures including capacity, volume/capacity ratio, queue lengths, and number of vehicles in the link. The matching algorithm is based on a statistical model of the signatures. The statistical model itself is estimated from the data, and does not require measurement of ‘ground truth’. The procedure does not require measurements of signal settings; in fact, signal settings can be inferred from the matched vehicle results. The procedure is tested on a 1.5 km (0.9 mile)-long segment of San Pablo Avenue in Albany, CA, under different traffic conditions. The segment is divided into three links: one link spans four intersections, and two links each span one intersection.  相似文献   

10.
Recent research has investigated various means of measuring link travel times on freeways. This search has been motivated in part by the fact that travel time is considered to be more informative to users than local velocity measurements at a detector station. But direct travel time measurement requires the correlation of vehicle observations at multiple locations, which in turn requires new communications infrastructure and/or new detector hardware. This paper presents a method for estimating link travel time using data from an individual dual loop detector, without requiring any new hardware. The estimation technique exploits basic traffic flow theory to extrapolate local conditions to an extended link. In the process of estimating travel times, the algorithm also estimates vehicle trajectories. The work demonstrates that the travel time estimates are very good provided there are no sources of delay, such as an incident, within a link.  相似文献   

11.
Travel time estimation and prediction on urban arterials is an important component of Active Traffic and Demand Management Systems (ATDMS). This paper aims in using the information of GPS probes to augment less dynamic but available information describing arterial travel times. The direction followed in this paper chooses a cooperative approach in travel time estimation using static information describing arterial geometry and signal timing, semi-dynamic information of historical travel time distributions per time of day, and utilizes GPS probe information to augment and improve the latter. First, arterial travel times are classified by identifying different travel time states, then link travel time distributions are approximated using mixtures of normal distributions. If prior travel time data is available, travel time distributions can be estimated empirically. Otherwise, travel time distribution can be estimated based on signal timing and arterial geometry. Real-time GPS travel time data is then used to identify the current traffic condition based on Bayes Theorem. Moreover, these GPS data can also be used to update the parameters of the travel time distributions using a Bayesian update. The iterative update process makes the posterior distributions more and more accurate. Finally, two comprehensive case studies using the NGSIM Peachtree Street dataset, and GPS data of Washington Avenue in Minneapolis, were conducted. The first case study estimated prior travel time distributions based on signal timing and arterial geometry under different traffic conditions. Travel time data were classified and corresponding distributions were updated. In addition, results from the Bayesian update and EM algorithm were compared. The second case study first tested the methodologies based on real GPS data and showed the importance of sample size. In addition, a methodology was proposed to distinguish new traffic conditions in the second case study.  相似文献   

12.
A procedure for the simultaneous estimation of an origin–destination (OD) matrix and link choice proportions from OD survey data and traffic counts for congested network is proposed in this paper. Recognizing that link choice proportions in a network change with traffic conditions, and that the dispersion parameter of the route choice model should be updated for a current data set, this procedure performs statistical estimation and traffic assignment alternately until convergence in order to obtain the best estimators for both the OD matrix and link choice proportions, which are consistent with the survey data and traffic counts.Results from a numerical study using a hypothetical network have shown that a model allowing θ to be estimated simultaneously with an OD matrix from the observed data performs better than the model with a fixed predetermined θ. The application of the proposed model to the Tuen Mun Corridor network in Hong Kong is also presented in this paper. A reasonable estimate of the dispersion parameter θ for this network is obtained.  相似文献   

13.
Nowadays, new mobility information can be derived from advanced traffic surveillance systems that collect updated traffic measurements, both in fixed locations and over specific corridors or paths. Such recent technological developments point to challenging and promising opportunities that academics and practitioners have only partially explored so far.The paper looks at some of these opportunities within the Dynamic Demand Estimation problem (DDEP). At first, data heterogeneity, accounting for different sets of data providing a wide spatial coverage, has been investigated for the benefit of off-line demand estimation. In an attempt to mimic the current urban networks monitoring, examples of complex real case applications are being reported where route travel times and route choice probabilities from probe vehicles are exploited together with common link traffic measurements.Subsequently, on-line detection of non-recurrent conditions is being recorded, adopting a sequential approach based on an extension of the Kalman Filter theory called Local Ensemble Transformed Kalman Filter (LETKF).Both the off-line and the on-line investigations adopt a simulation approach capable of capturing the highly nonlinear dependence between the travel demand and the traffic measurements through the use of dynamic traffic assignment models. Consequently, the possibility of using collected traffic information is enhanced, thus overcoming most of the limitations of current DDEP approaches found in the literature.  相似文献   

14.
Estimation of time-dependent arterial travel time is a challenging task because of the interrupted nature of urban traffic flows. Many research efforts have been devoted to this topic, but their successes are limited and most of them can only be used for offline purposes due to the limited availability of traffic data from signalized intersections. In this paper, we describe a real-time arterial data collection and archival system developed at the University of Minnesota, followed by an innovative algorithm for time-dependent arterial travel time estimation using the archived traffic data. The data collection system simultaneously collects high-resolution “event-based” traffic data including every vehicle actuations over loop detector and every signal phase changes from multiple intersections. Using the “event-based” data, we estimate time-dependent travel time along an arterial by tracing a virtual probe vehicle. At each time step, the virtual probe has three possible maneuvers: acceleration, deceleration and no-speed-change. The maneuver decision is determined by its own status and surrounding traffic conditions, which can be estimated based on the availability of traffic data at intersections. An interesting property of the proposed model is that travel time estimation errors can be self-corrected, because the trajectory differences between a virtual probe vehicle and a real one can be reduced when both vehicles meet a red signal phase and/or a vehicle queue. Field studies at a 11-intersection arterial corridor along France Avenue in Minneapolis, MN, demonstrate that the proposed model can generate accurate time-dependent travel times under various traffic conditions.  相似文献   

15.
Travel time is an important performance measure for transportation systems, and dissemination of travel time information can help travelers make reliable travel decisions such as route choice or departure time. Since the traffic data collected in real time reflects the past or current conditions on the roadway, a predictive travel time methodology should be used to obtain the information to be disseminated. However, an important part of the literature either uses instantaneous travel time assumption, and sums the travel time of roadway segments at the starting time of the trip, or uses statistical forecasting algorithms to predict the future travel time. This study benefits from the available traffic flow fundamentals (e.g. shockwave analysis and bottleneck identification), and makes use of both historical and real time traffic information to provide travel time prediction. The methodological framework of this approach sequentially includes a bottleneck identification algorithm, clustering of traffic data in traffic regimes with similar characteristics, development of stochastic congestion maps for clustered data and an online congestion search algorithm, which combines historical data analysis and real-time data to predict experienced travel times at the starting time of the trip. The experimental results based on the loop detector data on Californian freeways indicate that the proposed method provides promising travel time predictions under varying traffic conditions.  相似文献   

16.
Abstract

The purpose of this study was to investigate the impact of the five strikes on the London Underground (metro) rail system, which occurred in 2009 and 2010, on macroscopic and road link travel times. A consequence of these strikes was an increase in road traffic flows above usual levels. This provides an opportunity to observe the operation of the road network under unusually high flows. The first objective involves the examination of strike effects on inbound (IT) and outbound traffic (OT) within central, inner and outer London. Travel time data obtained from automatic number plate recognition cameras are used within the first part of the analysis. The second more detailed objective was to investigate in spatio-temporal effects on travel times on five road links. Correlation analyses and general linear models are developed using both traffic flow and travel time data. According to the results of the study, the morning IT had approximately twice as much delay as the OT. Central London experienced the highest delays, followed by inner and outer London. As would be expected, the unique full-day strike in 2009 yielded the worst impact on the network with the highest percentage increase in total travel time (60%) occurring during the morning peak in the IT in inner London. The results from the link-level analysis showed statistical significance amongst the examined links indicating heterogeneous effects from one link to another. It was also found that travel time changes may be more effectively captured through time-of-day terms compared to hourly traffic flows.  相似文献   

17.
Travel time functions specify the relationship between the travel time on a road and the volume of traffic on the road. Until recently, the parameters of travel time functions were rarely estimated in practice; however, a compelling case can be made for the empirical examination of these functions. This paper reviews, and qualitatively evaluates, a range of options for developing a set of travel time functions. A hierarchy of travel time functions is defined based on four levels of network detail: area, corridor, route and link. This hierarchy is illustrated by considering the development of travel time functions for Adelaide. Alternative sources of data for estimating travel time functions are identified.

In general, the costs and benefits increase as the travel time functions are estimated at finer levels of network detail. The costs of developing travel time functions include data acquisition costs and analysis costs. The benefits include the potential for reducing prediction errors, the degree of application flexibility and the policy sensitivity of the travel time functions.  相似文献   

18.
Estimation of urban network link travel times from sparse floating car data (FCD) usually needs pre-processing, mainly map-matching and path inference for finding the most likely vehicle paths that are consistent with reported locations. Path inference requires a priori assumptions about link travel times; using unrealistic initial link travel times can bias the travel time estimation and subsequent identification of shortest paths. Thus, the combination of path inference and travel time estimation is a joint problem. This paper investigates the sensitivity of estimated travel times, and proposes a fixed point formulation of the simultaneous path inference and travel time estimation problem. The methodology is applied in a case study to estimate travel times from taxi FCD in Stockholm, Sweden. The results show that standard fixed point iterations converge quickly to a solution where input and output travel times are consistent. The solution is robust under different initial travel times assumptions and data sizes. Validation against actual path travel time measurements from the Google API and an instrumented vehicle deployed for this purpose shows that the fixed point algorithm improves shortest path finding. The results highlight the importance of the joint solution of the path inference and travel time estimation problem, in particular for accurate path finding and route optimization.  相似文献   

19.
The traffic-restraint congestion-pricing scheme (TRCPS) aims to maintain traffic flow within a desirable threshold for some target links by levying the appropriate link tolls. In this study, we propose a trial-and-error method using observed link flows to implement the TRCPS with the day-to-day flow dynamics. Without resorting to the origin–destination (O–D) demand functions, link travel time functions and value of time (VOT), the proposed trial-and-error method works as follows: tolls for the traffic-restraint links are first implemented each time (trial) and they are subsequently updated using observed link flows in a disequilibrium state at any arbitrary time interval. The trial-and-error method has the practical significance because it is necessary only to observe traffic flows on those tolled links and it does not require to wait for the network flow pattern achieving the user equilibrium (UE) state. The global convergence of the trial-and-error method is rigorously demonstrated under mild conditions. We theoretically show the viability of the proposed trial-and-error method, and numerical experiments are conducted to evaluate its performance. The result of this study, without doubt, enhances the confidence of practitioners to adopt this method.  相似文献   

20.
Aiming to develop a theoretically consistent framework to estimate travel demand using multiple data sources, this paper first proposes a multi-layered Hierarchical Flow Network (HFN) representation to structurally model different levels of travel demand variables including trip generation, origin/destination matrices, path/link flows, and individual behavior parameters. Different data channels from household travel surveys, smartphone type devices, global position systems, and sensors can be mapped to different layers of the proposed network structure. We introduce Big data-driven Transportation Computational Graph (BTCG), alternatively Beijing Transportation Computational Graph, as the underlying mathematical modeling tool to perform automatic differentiation on layers of composition functions. A feedforward passing on the HFN sequentially implements 3 steps of the traditional 4-step process: trip generation, spatial distribution estimation, and path flow-based traffic assignment, respectively. BTCG can aggregate different layers of partial first-order gradients and use the back-propagation of “loss errors” to update estimated demand variables. A comparative analysis indicates that the proposed methods can effectively integrate different data sources and offer a consistent representation of demand. The proposed methodology is also evaluated under a demonstration network in a Beijing subnetwork.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号