首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
使用多年的混凝土结构或多或少出现病害,需要进行加固,但是考虑二次受力情况下RC加固梁正截面承载力计算公式尚未明确提出。文章通过分析不同初始荷载作用下增大截面法加固钢筋混凝土梁的极限破坏,研究二次受力对最大加固钢筋量及正截面承载力的影响,得到RC加固梁在加固配筋限值范围内正截面承载力计算公式。并与有限元软件分析结果进行对比验证,结果表明公式计算结果与分析结果基本一致,可为结构加固承载力计算提供参考。  相似文献   

2.
通过对2根梁试件(一根免拆卸模板混凝土梁,一根普通混凝土梁)的试验,研究了免拆卸模板混凝土受弯梁在单调荷载作用下的基本力学性能,包括荷载挠度变化规律、跨中混凝土应变、受力钢筋应变、正截面承载力、破坏形态等,对免拆卸模板一结构混凝土梁与普通混凝土梁的受力性能进行了对比。实验结果表明:采用现行规范计算免拆卸模板一结构混凝土梁的抗弯承载力具有较高的安全性能;免拆卸模板一结构混凝土梁能够满足挠度限值的要求;免拆卸模板.结构混凝土梁具有与常规混凝土梁相近的抗弯性能。  相似文献   

3.
以2片服役20年的先张法预应力混凝土空心板梁为试验研究对象,分析了未加固梁与铺装补强加固梁的破坏过程、破坏模式、抗裂性能和承载力。结果表明:未加固梁的破坏模式为受剪破坏,梁端钢绞线发生滑移现象,剪压区梁顶混凝土被压碎;铺装补强加固梁的破坏模式为受剪破坏,预应力钢绞线断裂,剪压区梁顶混凝土被压碎;铺装补强加固法增加了梁体截面受力高度,提高了梁体刚度,限制了梁体裂缝发展;铺装补强加固法可有效提高结构的开裂荷载和抗剪承载力,开裂荷载与未加固梁相比提高了7. 7%,抗剪承载力与未加固梁相比提高了12. 4%。  相似文献   

4.
GFRP筋混凝土梁正截面受弯性能试验研究   总被引:2,自引:0,他引:2  
为深入研究GFRP筋混凝土梁弯曲性能及设计方法,通过36根混凝土梁(其中GFRP筋混凝土梁21根,钢筋混凝土梁15根)的四点弯曲试验,对GFRP筋混凝土梁正截面的受弯性能进行了研究.在配筋率、几何尺寸、混凝土强度相同的条件下,对比分析了GFRP筋混凝土梁与钢筋混凝土梁的挠度及承载力特性;推导了GFRP筋混凝土梁受弯承载力、界限受压区高度的计算公式,并用试验数据验证了公式的正确性.结果表明:GFRP筋混凝土梁与钢筋混凝土梁的最大挠度之比为1.5~2.5;初裂承载力之比为0.53~0.69,极限承载力较接近,比值为0.75~1.02;GFRP筋混凝土梁界限相对受压区高度为0.17~0.20.建议取配筋率为1.4倍平衡配筋率,以使构件具有足够的承载力储备.  相似文献   

5.
为了解西部地区氯氧镁水泥混凝土的抗压强度以及田口方法在混凝土配合比中的适应性,针对活性MgO与MgCl2摩尔比、粉煤灰、耐水性改性剂和减水剂对氯氧镁水泥混凝土抗压强度的影响进行了研究,确定了各因素对氯氧镁水泥混凝土抗压强度的影响程度,并量化表征,提出了多因素共同作用氯氧镁水泥混凝土抗压强度信噪比的多元非线性回归模型. 研究结果表明,最优氯氧镁水泥混凝土28 d抗压强度设计组合为:摩尔比为5.4,不掺粉煤灰,耐水性改性剂为1%磷酸,减水剂为1%,各因素影响程度从大到小的顺序为:减水剂、粉煤灰、摩尔比、耐水性改性剂. 最优氯氧镁水泥混凝土长期抗压强度设计组合为:摩尔比为5.4,不掺粉煤灰,耐水性改性剂为2%磷肥,减水剂为1%,各因素影响程度从大到小的顺序为:摩尔比、粉煤灰、耐水性改性剂、减水剂.   相似文献   

6.
为促进超高性能混凝土(UHPC)深梁的应用, 进行了4根以混凝土强度为主要参数的UHPC深梁受剪性能试验, 并开展了C40和C80混凝土深梁的对比试验; 分析了UHPC深梁的荷载-挠度曲线、破坏模式、钢筋应变、裂缝形态与极限荷载; 为探讨现有普通混凝土深梁受剪承载力计算方法是否可用于UHPC深梁, 应用《混凝土结构设计规范》(GB 50010—2010)对6根深梁试件进行了抗剪强度计算。研究结果表明: 混凝土强度越大, 在相同荷载下深梁的刚度越大, 在深梁开裂前的弹性阶段, UHPC试件刚度随钢纤维掺量的增大略有增大; 与C40和C80混凝土深梁一样, UHPC深梁裂缝包括弯剪裂缝和腹剪裂缝, 当荷载分别为13%~22%和18%~34%极限荷载时, 两类裂缝先后出现; UHPC深梁在加载全过程中梁、拱受力机制共存, 加载前期梁受力机制起主导作用, 后期则拱受力机制起主导作用; UHPC深梁裂缝多而密, 发生剪压破坏, 在支座上端反拱区不产生裂缝, 而C40和C80混凝土深梁出现斜压破坏, 且在支座上端反拱区产生裂缝; 试验梁受剪承载力随混凝土强度的增大约呈指数式增大, 混凝土强度从C40增大到C80、C190时, 其受剪承载力分别增大了30.76%和201.92%;采用《混凝土结构设计规范》(GB 50010—2010)中方法计算的UHPC深梁受剪承载力与试验值比值的均值为0.89, 均方差为0.15, 在没有更精确的计算方法之前, 该计算方法暂时可用。   相似文献   

7.
针对高强混凝土材料的特点,考虑材料非线性的影响,利用大型软件对预应力高强混凝土T梁进行了全过程仿真计算。根据正截面受力破坏特点,建立了正截面强度计算公式。在此基础上,对影响正截面强度的重要参数梁高、配筋率等进行大量计算与分析,得出其适用范围。计算结果可靠,可供工程设计人员参考使用。  相似文献   

8.
结合高强混凝土材料的特点,利用大型软件ANSYS程序,计入材料非线性的影响,充分考虑预应力钢筋、普通钢筋的作用,对预应力高强混凝土T梁进行了全过程仿真计算.计算结果全面反映了预应力高强混凝土T梁的受力过程、破坏形态,结果可靠.  相似文献   

9.
为了提高普通钢筋混凝土梁的耐久性,设计了一种超高性能混凝土(UHPC)-高性能混凝土(HPC)组合梁新型结构,开展了锈蚀后UHPC-HPC组合梁的抗弯性能试验,研究了氯盐侵蚀后组合梁抗弯承载力降低的机理,分析了腐蚀程度、截面形式与预损伤对其抗弯性能的影响;引入钢筋屈服强度折减系数、截面积折减系数与混凝土预损伤系数,提出了锈蚀后UHPC-HPC组合梁抗弯承载力计算方法,并验证了计算方法的可行性。分析结果表明:锈蚀后梁体抗弯承载力降低主要原因为钢筋抗拉强度下降,梁体刚度退化与韧性减弱,钢纤维阻裂效果削弱;锈蚀后UHPC-HPC组合梁的破坏表现为跨中附近出现1条主裂缝或加载点附近出现2条主裂缝;UHPC-HPC组合梁的受力过程分为线弹性、裂缝发展和屈服3个阶段,梁体截面混凝土应变基本符合平截面假定;侵蚀时间越长,组合梁的开裂荷载和承载力降低越大,通电快速侵蚀10 d时,降幅分别达16.2%和10.9%;锈蚀后T形梁比矩形梁开裂早,前者的开裂荷载比后者降低8.1%,后期刚度下降较快;预损伤显著影响梁的整体刚度,预加载后梁的整体刚度降低,混凝土损伤后的预损伤系数为0.984;锈蚀率越大,钢筋的屈...  相似文献   

10.
为进一步了解加固预应力梁的受力性能,通过试验研究了碳纤维布加固预应力钢筋混凝土梁的抗弯性能,量测了各试验梁的钢筋、碳纤维和跨中截面混凝土表面的应变、梁的变形曲线、裂缝的形态和发展及正截面受弯破坏形态等;得出了试验梁的跨中荷载-挠度曲线,并且对试验结果进行了分析.试验结果表明,粘贴碳纤维布可以明显提高梁抗弯承载力,粘贴一、两层纤维布的完好梁承载力提高幅度分别为44.73%和55.81%;初始微裂缝对碳纤维布加固预应力混凝土梁的影响较小.  相似文献   

11.
矩形不锈钢管混凝土短柱轴压性能试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究矩形不锈钢管混凝土短柱轴压承载力性能,对7组不同截面尺寸的矩形不锈钢管混凝土短柱进行轴压试验,得到了不同试件的破坏模式、荷载-位移曲线、荷载-横向应变曲线、荷载-纵向应变曲线、荷载-长宽比曲线,分析了矩形截面长宽比对试件承载力的影响. 研究结果表明:矩形不锈钢管混凝土短柱在轴向压力作用下,其典型破坏模式为试件局部向外屈曲破坏;在相同长宽比的情况下,壁厚由4 mm增加到6 mm时,试件承载力增加25%~57%;在相同壁厚的情况下,长宽比由1增加到2,试件承载力减小22%~30%;将本文试验数据与国内外普通碳钢钢管混凝土柱的相关规范和标准的计算结果进行对比分析,发现不锈钢管混凝土短柱轴压承载力较相同截面的普通碳钢钢管混凝土短柱承载力平均高出14%;通过数值拟合得到了轴压承载力计算公式,该计算公式能较好地预测矩形不锈钢管混凝土短柱轴压承载力.   相似文献   

12.
根据钢筋混凝土梁的正截面破坏的作用机理,分析了不同卸荷条件下二次受力对粘钢加固混凝土梁界限相对受压区高度ξb的影响,推导出了再受力情况下(即不完全卸载与完全卸载条件下)ξb岛公式的差异。指出实际应用时应根据实际卸荷情况,考虑对ξb的影响决定粘钢量。  相似文献   

13.
为了研究有粘结预应力AFRP-钢混合配筋混凝土构件的抗弯性能,基于平截面假定和截面内力平衡条件,推导了预应力AFRP-钢混合配筋混凝土构件适筋破坏情形下正截面受弯承载力以及截面开裂弯矩的计算公式,利用推导的计算公式对五组具有相同整体配筋率、不同初始张拉控制应力的预应力混合配筋构件抗弯性能进行了研究,对预应力AFRP-钢混合配筋构件与普通混合配筋构件的极限抗弯承载力与抗裂承载力进行了对比.研究表明:按照给出的预应力AFRP-钢混合配筋混凝土构件抗弯承载力及开裂弯矩计算公式可较好地反映结构的受力特征;在预应力AFRP筋与普通AFRP筋极限抗拉强度相同的情形下,将预应力AFRP筋代替普通AFRP筋材,对AFRP-钢混合配筋混凝土构件极限抗弯承载力提升的效果并不明显;预应力AFRP-钢混合配筋混凝土构件可以有效地提升结构的抗裂承载能力.在算例中,当张拉控制应力σcon接近于预应力AFRP筋极限抗拉强度的25%时,构件抗裂承载力提升78.7%,从而有效延迟了截面裂缝开裂的时间,增大了结构的抗弯刚度.  相似文献   

14.
钢绞线网-复合砂浆加固钢筋混凝土梁的受弯性能   总被引:1,自引:0,他引:1  
分析了钢绞线网-复合砂浆加固钢筋混凝土梁的荷载-挠度曲线,研究了加固层与本体梁界面的粘结机理。将钢筋混凝土梁的受力性能分为未裂阶段、裂缝阶段和破坏阶段,在平截面假定的基础上,建立了高强钢绞线网-复合砂浆加固梁的截面弯矩-跨中挠度分析模型。采用换算截面法对加固梁在集中荷载作用下的抗弯性能进行全过程受力分析,并通过10根加...  相似文献   

15.
针对西部盐湖地区普通硅酸盐钢筋混凝土抗盐卤侵蚀性能较差的问题,制备了具有较强抗盐卤侵蚀性能的氯氧镁水泥钢筋混凝土.采用电化学工作站测试方法,测试了在硫酸镁溶液浸泡环境下,不同涂层钢筋的周期极化曲线及电化学参数(自腐蚀电位、腐蚀电流密度和腐蚀速率),研究了较高氯离子含量的氯氧镁水泥混凝土中钢筋的腐蚀性能及防护.研究结果表明:在氯氧镁水泥混凝土中裸露钢筋处于严重腐蚀状态,采用达克罗涂层、必耐斯涂层、锌美特涂层和美加力涂层保护的钢筋处于低腐蚀状态,有久美特涂层保护的钢筋未发现腐蚀;达克罗涂层、必耐斯涂层、锌美特涂层、久美特涂层和美加力涂层的腐蚀速率分别约为裸露钢筋腐蚀速率的1/36~1/19、1/20~1/13、1/31~1/16、1/91~1/50和1/22~1/16,表明涂层技术可以减缓氯氧镁水泥混凝土中钢筋的腐蚀速率.  相似文献   

16.
为解决危旧混凝土梁桥结构性能显著下降的问题, 采用足尺试验研究了应用钢板-混凝土组合加固预应力混凝土小箱梁的抗弯承载性能; 对2片20m跨径钢板-混凝土组合加固足尺梁进行抗弯承载性能试验, 并与1片未加固足尺梁和1片预应力CFRP加固足尺梁的抗弯承载性能试验结果进行对比, 分析了足尺预应力混凝土小箱梁组合加固后的抗弯性能, 研究了加载全过程跨中截面的加固钢板、原梁主筋、顶板混凝土和钢筋与连接构造的应变变化规律; 基于足尺试验结果, 建立了钢板-混凝土组合加固预应力混凝土小箱梁抗弯承载力简化计算公式。研究结果表明: 钢板-混凝土组合加固梁在破坏时表现出明显塑性破坏特征; 与未加固梁相比, 钢板-混凝土组合加固足尺试验梁的极限承载力实测值提高了76%以上, 在正常使用阶段下的刚度提高1倍以上, 因此, 组合加固能显著提高预应力混凝土箱梁的承载性能; 受力过程中试验梁跨中截面应变分布符合平截面假定; 组合加固部分与混凝土箱梁腹板纵向相对滑移小于0.6mm, 因此, 钢板-混凝土组合加固后的试验梁整体工作性能较好; 足尺试验得到的极限承载力与简化公式计算结果的比值分别为1.06和1.01, 因此, 简化公式可靠, 可用于组合加固预应力混凝土箱梁的承载性能计算与分析。   相似文献   

17.
进行了18根钢管轻集料混凝土短柱的偏心受压试验.分析了偏心荷载作用下不同含钢率、偏心率的钢管轻集料混凝土短柱的破坏过程、破坏模式及破坏机理,并对试件的承载力影响参数及其承载力性能开展了研究.试验结果表明,钢管轻集料混凝土短柱在偏压荷载作用下,其荷载-挠度曲线主要分弹性阶段、弹塑性阶段和下降段;内填轻集料混凝土能够有效延缓外侧钢管的局部屈曲;试件的破坏模式属于弹塑性破坏或塑性破坏;在试件中截面,钢管对核心轻集料混凝土的约束作用与受力区域及加载过程有关;含钢率和偏心率对试件的极限承载力性能有一定影响,含钢率越大,试件承载力极限也越大,偏心率越大,试件极限承载力越小;钢管轻集料混凝土短柱偏压承载力与相同条件下的钢管普通混凝土短柱大致相当.  相似文献   

18.
对钢-混凝土双面结合梁截面从开始加载到破坏的全过程进行分析,分析中考虑了混凝土开裂、材料非线性及滑移效应等影响因素。编制了用于计算M-φ曲线的数值迭代程序,此程序也适用于钢-混凝土单面结合简支梁和连续梁截面。通过算例,对双面结合梁截面受弯全过程的M-φ曲线进行了分析讨论,并与传统的单面结合梁进行了比较分析。  相似文献   

19.
为了简化部分预应力混凝土梁的设计过程, 减少设计试算的次数, 缩小预应力筋用量的取值范围, 提出了基于裂缝宽度的部分预应力混凝土梁设计方法; 从正常使用状态的裂缝宽度出发, 根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》 (JTG D62—2004) (简称《公路规范》) 中对裂缝宽度的规定, 通过最大裂缝宽度求解受拉区普通钢筋的应力, 并建立关于开裂截面中性轴高度的一元三次方程; 根据预应力筋的有效应变要求, 结合《公路规范》中最小配筋率的规定, 得到了预应力筋用量的上、下限; 给出了设计方法的主要步骤和具体验算过程, 并设计了1根T形截面试验梁, 以验证设计方法的合理性。研究结果表明: 验算梁的抗弯承载力及预应力筋用量的上、下限满足规范要求; 试验梁的荷载与挠度基本呈现三折线关系, 在外荷载为50.0kN时, 试验梁跨中出现裂缝, 外荷载为128.5kN时, 试验梁受拉普通钢筋屈服, 外荷载为157.8kN时, 试验梁跨中混凝土压碎破坏, 试验梁总体呈延性破坏特征, 满足承载性能要求; 在受拉普通钢筋屈服前, 试验梁实测最大裂缝宽度为0.18mm, 未超过预估的最大裂缝宽度0.20mm, 满足正常使用要求。可见, 提出的设计方法合理、可行, 能够简化部分预应力混凝土梁的设计过程。   相似文献   

20.
对3片足尺预应力混凝土空心板梁进行抗弯性能试验, 其中1片足尺梁不进行加固, 2片分别采用钢板-混凝土组合加固和钢板-预应力混凝土组合加固, 分析了试验梁主要部位的应变、滑移、裂缝分布、承载力、刚度和延性; 基于试验梁塑性破坏机理, 并考虑二次受力的影响, 推导了足尺试验梁的抗弯极限承载力计算公式。试验结果表明: 加固后试验梁的破坏形态表现为塑性弯曲破坏, 跨中横截面变形符合平截面假定; 组合加固钢板与新混凝土之间以及加固部分与原结构之间相对滑移小于0.05mm, 因此, 加固后试验梁各部分协同工作性能较好; 与未加固梁相比, 钢板-混凝土组合加固试验梁抗弯极限承载力提高了1.08倍, 钢板-预应力混凝土组合加固试验梁抗弯极限承载力提高了1.43倍, 因此, 组合加固能显著提高试验梁的极限承载力; 与未加固梁相比, 2片加固试验梁的延性系数均提高了21%, 当试验荷载为200kN时, 2片加固试验梁刚度分别提高了1.55、3.07倍, 因此, 组合加固能显著提高试验梁的刚度和延性; 与钢板-混凝土组合加固技术相比, 钢板-预应力混凝土组合加固技术对试验梁在使用阶段的承载性能和刚度的提高更加明显; 2片加固试验梁抗弯极限承载力的计算值与试验值的比值分别为0.94和0.96, 因此, 抗弯极限承载力计算公式计算精度较高, 可用于钢板-混凝土组合加固预应力混凝土空心板梁的抗弯承载性能计算与分析。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号