首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为合理设置大跨组合斜拉桥钢板梁的腹板及其加劲肋,结合实例,在考虑后屈曲性能的影响下,对钢主梁受压区格长高比和加劲肋与腹板刚度比的合理选取进行研究。采用有限元软件EBPLATE计算腹板正应力屈曲系数、剪切屈曲系数及抗剪承载力,分析屈曲系数与钢主梁受压区格长高比和加劲肋与腹板刚度比的关系。结果表明:统筹考虑受压区纵肋布置及横肋的间距,受压区格长高比建议设计值区间为2.0~2.5,在这个区间纵肋的有效宽度大,局部正应力屈曲系数较大且剪切屈曲系数处于中值;在受压区,加劲肋与腹板刚度比建议设计值区间取13.0~15.0,在腹板厚度适中的情况下,使腹板成为中度加劲板。  相似文献   

2.
波纹钢腹板组合箱梁的抗剪受力性能   总被引:9,自引:0,他引:9  
以某跨径为40 m的波纹钢腹板预应力组合梁桥为原型,根据相似理论设计制作了缩尺模型试验梁。通过测试模型梁在静力荷载作用下的挠度和应变,研究了该桥型的抗剪受力性能。采用有限元方法研究了波纹钢腹板的整体尺寸、波纹板厚度、波折角度、波纹板高度和平板宽度等对波纹钢腹板构件非线性剪切屈曲性能的影响。另外,对Hamilton所做的波纹钢腹板剪切屈曲试验结果进行了回归分析,给出了波纹钢腹板局部屈曲强度的半经验半理论计算公式。结果表明:混凝土顶板和底板承担了大部分弯矩,波纹钢腹板主要承担剪力,且剪力沿波纹板高度方向均匀分布。  相似文献   

3.
带加劲肋钢-混凝土组合蜂窝梁腹板成排开孔后,主要削弱了其抗剪稳定性和抗剪强度。为探明这一新型桥梁结构的力学特点,采用有限元方法对钢-混凝土组合蜂窝梁开孔腹板的抗剪性能进行了深入研究。对不同边界条件下的开孔腹板进行弹性剪切屈曲分析,考虑孔洞的影响引入径高比和宽高比参数,对实腹板剪切屈曲系数加以修正,并引入约束系数表征约束程度,推导得到了开孔腹板剪切屈曲系数的计算公式。建立开孔腹板抗剪极限承载能力有限元计算模型,考虑材料、几何双重非线性,对不同参数开孔腹板的抗剪承载能力进行了大量的有限元分析,在数据分析基础上量化弹性屈曲荷载和屈曲后荷载对开孔腹板抗剪承载能力的贡献。引入腹板的开孔率参数,提出了开孔腹板抗剪极限承载力的计算公式,同时分析了不同初始几何缺陷对开孔腹板抗剪性能的影响。结果表明:不同边界条件下的开孔腹板剪切屈曲系数公式与有限元值吻合良好;开孔腹板仍可发展一部分屈曲后强度,屈曲后强度可偏保守地表示为开孔腹板塑性强度的30%,开孔腹板抗剪极限承载力计算公式与有限元计算结果吻合较好,且总体偏于安全;不同的初始几何缺陷对开孔腹板荷载-位移曲线形式有较大影响,但对其抗剪承载能力影响很小。  相似文献   

4.
桥梁工程中为了方便工程检修与管线布设,经常在梁腹板上开孔。为研究腹板开孔对预应力波纹腹板钢-混凝土组合梁抗火性能的影响,按照完全抗剪连接设计了2片承受两点对称集中荷载作用的预应力波纹腹板钢-混凝土简支组合梁,其中一片是预应力波纹腹板开孔组合梁,另一片是预应力波纹腹板无孔组合梁;采用ISO834国际标准升温曲线对其进行了恒载升温耐火试验,同时采用有限元软件ABAQUS对其进行了数值研究。研究结果表明:高温下2类预应力波纹腹板钢-混凝土组合梁均在剪弯区发生剪切屈曲;在截面尺寸和跨度相同条件下,承受相同的绝对荷载时,腹板开孔后的预应力波纹腹板钢-混凝土组合梁相对于后者在临界状态下抗弯刚度降低,抗火性能下降;在高温作用下,腹板开孔波纹腹板钢-混凝土组合梁相对于腹板未开孔波纹腹板钢-混凝土组合梁,预应力拉索的效率更高,下降速率更慢;腹板开孔后的预应力波纹腹板钢-混凝土组合梁,在升温后期其滑移曲线发展速率略高于腹板未开孔钢-混凝土组合梁;对于腹板开孔波纹腹板钢-混凝土组合梁,在未出现腹板局部屈曲截面上,腹板分担的剪力可达截面总剪力的78%;开孔截面的总剪力几乎完全由混凝土板承担;临界状态下钢梁腹板正应力略高于常温下的腹板正应力水平。  相似文献   

5.
通过有限元软件ANSYS建立波纹钢腹板钢梁有限元模型,对模型进行特征值屈曲分析,并通过与平腹板钢梁模型进行对比,探讨波纹钢腹板的屈曲特性.  相似文献   

6.
波形钢腹板梁的剪切强度由腹板的剪切屈曲控制,而既有研究中还缺乏对受剪波形钢腹板梁破坏过程中腹板本身应力状态变化的研究。因此,基于一组大尺寸的波形钢腹板工字梁极限剪切试验结果,对受剪波形钢腹板直至破坏过程中的应力状态进行了分析。验证了波形钢腹板梁的剪切破坏由腹板剪切屈曲导致,按照腹板应力状态的变化规律可以将剪切破坏划分为屈曲前、屈曲时、屈曲后三个阶段,并总结了各阶段的应力状态特征。  相似文献   

7.
为研究应力比对钢桥面外变形疲劳性能的影响,通过足尺疲劳试验对不同应力比循环荷载作用下钢桥腹板间隙典型细节的疲劳裂纹萌生和扩展机理进行研究。采用5个足尺试件开展了疲劳试验,研究了40mm和60mm腹板间隙在不同应力比循环荷载作用下的裂纹萌生和扩展行为,分析了腹板间隙处腹板与竖向加劲肋焊趾细节应力随着循环荷载变化的规律,得到了应力比对该构造细节面外变形疲劳性能的影响。研究结果表明:腹板间隙处腹板与竖向加劲肋焊趾处面外变形疲劳性能受应力比影响较大,疲劳裂纹从焊趾处萌生后远离竖向加劲肋在腹板内扩展;腹板间隙为40mm、应力比小于0.3时,腹板与竖向加劲肋焊趾处的细节疲劳强度为AASHTO规范中D类和Eurocode规范中的71类;应力比大于0.3且小于0.5时,该细节的疲劳强度降为AASHTO规范中E′类和Eurocode规范中的45类;腹板间隙为60mm、应力比小于0.3时,腹板与竖向加劲肋焊趾处的细节疲劳强度为AASHTO规范中C类和Eurocode规范中的100类;应力比大于0.3且小于0.5时,该细节的疲劳强度降为AASHTO规范中D类和Eurocode规范中的80类;腹板与竖向加劲肋焊趾处疲劳裂纹的扩展速率在高应力比的循环荷载作用下较低应力比循环荷载作用下更快;细节疲劳强度随应力比的增加而显著降低,随腹板间隙的增大有一定程度的提高。  相似文献   

8.
以开口截面薄壁杆件的约束扭转理论为基础,推导出波形钢腹板Ⅰ型钢梁约束扭转时扭转中心的精确位置,并求得以扭转中心为极点的主扇性惯性矩,在此基础上求得波形钢腹板Ⅰ型钢梁的弹性弯扭屈曲临界荷载的计算公式.使用所得的计算公式对5片波形钢腹板Ⅰ型钢梁进行弹性弯扭屈曲临界荷载的计算,计算结果与ANSYS有限元结果吻合良好,验证了所得公式的正确性.最后,分析了波形钢腹板Ⅰ型钢梁波形的形状对其弹性弯扭屈曲临界荷载的影响.  相似文献   

9.
为研究正弦波形波纹腹板工字型钢板梁的抗剪性能,采用ABAQUS非线性有限元程序,借助于线弹性特征值屈曲分析以及弹塑性剪切屈曲分析(考虑腹板初始缺陷的影响),将典型正弦波形波纹腹板钢板梁的抗剪强度与梯形波纹腹板钢板梁做了对比,并分析了影响正弦波形波纹腹板钢板梁抗剪强度的关键因素.数值分析结果表明,在波长与波幅不变的情形下,正弦波形的抗剪承载力低于梯形形式,在设计中应予以注意;若通过减小波长保证材料用量不变,正弦波形的抗剪承载力与梯形形式相同;正弦波形波纹钢腹板钢板梁的剪切屈曲临界应力随着腹板厚度的增加或波长的减小而显著增大,而腹板高度与波幅均没有显著影响正弦波形波纹钢腹板的剪切屈曲临界应力对初始缺陷的敏感程度.  相似文献   

10.
该文以开口加劲肋正交异性钢桥面铺装体系作为研究对象,建立了包括桥面板和铺装的整体三维有限元分析模型,研究了荷载作用下铺装层的力学特性.分析表明,横向拉应力是开口加劲肋正交异性钢桥面铺装设计的一个重要控制指标;开口加劲肋正交异性钢桥面铺装层问剪应力较大,在铺装结构设计时应注意选择具有较强抗剪强度的粘结材料;开口加劲肋正交异性钢桥面铺装对车辆荷载的应力应变响应具有很强的局部效应.  相似文献   

11.
该文提出了一种新型的带板肋的超高性能混凝土轻型组合结构,通过有限元建模的方法分析了其应用于浙江五一大桥时的抗疲劳性能并与原U肋加劲的钢桥面板进行对比分析。针对该结构在负弯矩作用下UHPC的抗弯拉疲劳性能以及组合结构层间栓钉抗剪疲劳性能开展了足尺模型疲劳性能试验。结果表明:(1)带板肋的组合桥面结构完全解决了传统钢桥面中部分细节疲劳抗性不足的问题;(2)负弯矩疲劳试验得到板肋轻型组合桥面中UHPC层在10MPa弯拉应力幅的作用下经过500万次疲劳荷载作用后裂缝宽度仅为0.09mm,对结构整体性能无明显影响;(3)板肋组合结构中栓钉连接件在90 MPa疲劳应力幅作用下经过50万次循环荷载作用后,未见任何破坏迹象及层间滑移裂缝,换算得到实桥中栓钉抗剪疲劳寿命不小于76 293万次;(4)板肋组合结构中加劲肋在193MPa疲劳应力幅作用下经过50万次循环荷载作用后发生断裂破坏,换算得到实桥中加劲肋疲劳寿命为5 616万次。  相似文献   

12.
为改善波形钢腹板组合梁负弯矩区受力性能,避免波形钢腹板剪切屈曲以及受压翼缘局部屈曲,提出波形钢腹板内衬混凝土形成组合构造的措施。通过设计具有不同弯、剪比参数的2个试件,开展波形钢腹板内衬混凝土组合梁模型试验,研究其承受弯矩与剪力共同作用下的力学性能,明确不同弯、剪比对极限承载能力以及失效模式的影响,建立弯、剪共同作用的相关方程。试验结果表明:试件的破坏模式为明显的弯、剪耦合破坏,内衬混凝土出现弯曲、剪切2类主裂缝;弯剪比对试件未开裂截面抗剪刚度影响较小,但对初始开裂后试件抗剪刚度影响较大;弯剪比增大,试件开裂荷载减小,结构的延性增加;在弯、剪共同作用下,未开裂截面应变基本满足平截面假定,但受拉区混凝土开裂后,相应区域波形钢腹板由于"折叠效应"应变较小,平板段几乎为0,斜板段由于混凝土的挤压作用应变不为0。最终依据模型试验与数值模拟结果,建立弯、剪共同作用下波形钢腹板内衬混凝土组合梁承载力评价准则,为今后的设计提供参考。  相似文献   

13.
为探索新型结构波形钢腹板组合T梁的受力性能,制作了下翼板布置直线型体内纵向预应力筋的缩尺试验梁,采用两点对称加载的方式开展了静载破坏性试验,对试验梁的截面正应变分布、荷载-位移曲线、开裂弯矩、剪应力分布、破坏形态、裂缝发展规律等进行测试。使用ABAQUS软件建立了试验梁的有限元模型,采用混凝土的损伤塑性模型和钢材的理想弹塑性本构对加载全过程进行非线性分析。基于钢-混组合梁的收缩、徐变理论和钢筋混凝土梁的抗弯承载力计算方法,对试验梁的开裂荷载和抗弯承载力进行理论计算。结果表明:只布置下翼板纵向预应力筋的波形钢腹板组合T梁的荷载-位移全过程曲线表现出较明显的弹性、弹塑性和塑性变形阶段,具有较大的抗弯刚度和良好的抗裂性和延性;抗弯承载力与开裂荷载的比值为1.79,具有较合理的承载受力特点;整个加载过程中,钢腹板与混凝土翼板变形协调,表现为典型的受弯破坏形态;剪应力在波形钢腹板组合T梁的腹板中分布均匀,可不设置弯起筋提供抗剪承载力;忽略波形钢腹板的轴向变形刚度和抗弯承载力,能准确计算开裂荷载和抗弯承载力;波形钢腹板组合T梁的力学机理明确,静力性能良好,具有工程应用前景。  相似文献   

14.
为了解矩形钢管混凝土梁在弯矩作用下的受力性能及加劲肋对其弯曲性能的影响,设计制作flat试件(无加劲肋)、rib试件(设置普通加劲肋)和PBL试件(设置PBL加劲肋)共3个矩形钢管混凝土试件,进行纯弯试验,研究各试件的荷载~位移曲线、中性轴移动规律、混凝土和钢材应变规律、破坏模式等,并基于AISC规范方法计算各试件的抗弯承载力,对比填充混凝土对钢梁抗弯承载力的影响。结果表明:在用钢量相同的前提下,flat试件的混凝土与钢管之间产生了滑移,rib试件在横向集中荷载的作用下局部混凝土开裂严重,PBL试件的钢管混凝土整体性较好,混凝土无滑移;填充混凝土对设PBL试件和rib试件的抗弯承载力有显著提高,对flat试件的抗弯承载力提高很小。  相似文献   

15.
波形钢腹板剪切屈曲分析   总被引:1,自引:1,他引:0  
波形钢腹板组合箱梁最显著的受力特点是:混凝土顶底板抗弯,波形钢腹板抗剪。该文介绍了美国Hamilton教授的剪切屈曲试验情况,并对试验梁进行了弹塑性局部屈曲和整体屈曲有限元分析;采用小挠度线性理论,将局部屈曲和整体屈曲板件分别比拟成四边受剪的矩形板和正交异性板,推导了各自的临界剪应力计算公式。理论分析值与试验结果、空间有限元计算值吻合较好,说明该文的理论公式可以在设计中应用。  相似文献   

16.
王军茂  张利明 《公路》2023,(11):132-139
波纹钢腹板梁与采用平面腹板的传统钢板梁相比,在用钢量相同的情况下,具有更大的抗剪屈曲能力。目前的一些标准和规范,如欧洲规范,给出了确定波纹腹板梁抗剪屈曲承载力的设计方法。本研究利用ANSYS软件进行非线性有限元分析,对波纹腹板的抗剪屈曲能力开展了参数研究,并验证了欧洲规范计算公式的准确性。结果表明,波纹腹板的抗剪屈曲能力随着腹板厚度、腹板高度、波纹角度、波纹深度和沿梁跨波纹数的增加而增加,随着波纹宽度的增加而降低;欧洲规范公式的精度对于梯形波纹腹板是合适的,但对于使用三角形或矩形波纹腹板的梁,则必须加以修正。  相似文献   

17.
通过非线性有限元方法分析波纹钢腹板剪切屈曲极限荷载和屈曲模态,采用一致缺陷模态法模拟波形尺寸缺陷,钢板厚度缺陷则通过钢板厚度分布函数对单元厚度的修正来引入。分析结果表明过大的波形尺寸缺陷会降低波纹钢腹板的剪切屈曲极限荷载,而波纹钢腹板对因钢板厚度缺陷而引起的过早屈曲要大大优于平钢腹板,微小的厚度缺陷对波纹钢腹板的剪切屈曲极限荷载影响很小。  相似文献   

18.
为了充分利用高强钢的高强度特性,设计了4片采用Q420qD高强度腹板的焊接工字钢梁,并采用跨中单点加载的形式进行抗剪性能试验研究。分析了腹板高厚比、翼缘约束效应、剪跨比等关键参数对高强度工字钢梁抗剪性能的影响规律,研究了高强度Q420qD腹板的抗剪极限承载能力及剪切破坏机理,并验证建议理论模型的正确性与腹板抗剪承载力计算公式对高强度钢梁的适用性。研究结果表明:试验梁在腹板弹性剪切屈曲后均形成了拉力带,充分发挥了屈曲后强度,最终形成框架机构;基于试验结果确定了高强度工字钢梁腹板的拉力带分布形式与破坏框架模型,其可作为高强度工字钢梁腹板的剪切失效理论模型;采用较大的翼缘相对腹板刚度,可提供更强的剪切抗力,理论计算时应计入翼缘对腹板的约束效应,试验与理论计算的对比分析结果验证了高强度工字钢梁翼缘对腹板约束系数的合理取值应为1.25,理论模型与计算公式适用性强;随着剪跨比的增大,试验梁的腹板屈曲后强度均充分发展,但试验梁在弹性屈曲后的腹板面外变形明显减小,仅在临近剪切极限强度时腹板面外变形呈不收敛增长,因此高强度腹板设计时应兼顾腹板面外屈曲变形的控制与腹板屈曲后强度的有限利用,保证高强钢桥使用阶段的安全可靠。  相似文献   

19.
为改善钢管混凝土套箍效应和节点传力可靠性问题,提出PBL加劲型矩形钢管混凝土结构,从管壁局部屈曲力学性能、构件力学性能、界面力学性能和节点力学性能4个方面,对已有研究成果进行总结,并与传统的钢管混凝土结构进行对比,综述了不同结构的宽厚比限值、轴压强度、轴压稳定、抗弯性能、压弯性能、剪切-滑移本构关系、节点传力长度、疲劳荷载作用下钢-混界面黏结性能、节点静力性能和节点疲劳性能,系统地阐述了PBL加劲型矩形钢管混凝土结构的力学性能优势。结果表明:在轴压和压弯荷载作用下,由于混凝土的支撑作用,以及PBL纵肋的加劲和连接作用,钢管的宽厚比限值相比矩形钢管混凝土结构提高到2倍以上;PBL加劲型矩形钢管混凝土构件轴压承载力相比矩形钢管混凝土有所提高,同时,PBL纵肋保证了构件的完全黏结,组合作用得到发挥,结构的轴压和抗弯刚度也得到提高;PBL加劲肋孔中的混凝土榫提供了较大的抗剪承载力,界面强度相比矩形钢管混凝土提高2倍以上,剪切模量提高3倍以上,有效缩短了节点传力长度,且疲劳荷载作用下,界面性能更可靠;管内PBL纵肋的抗拔作用,可有效限制节点部位主管表面弯曲变形,使节点刚度和承载力得到提高,焊趾位置热点应力集中系数明显减小,疲劳性能得到改善。  相似文献   

20.
为明确波形钢腹板工字钢-混凝土结合板梁桥关键设计参数的合理取值范围,以3×30 m波形钢腹板结合梁桥通用图为研究对象,建立波形钢腹板工字钢-混凝土结合板梁有限元模型进行参数敏感性分析。研究翼缘板宽厚比、波形钢腹板高厚比、横隔板间距及钢梁高跨比等对结构受力性能的影响,并给出关键设计参数合理取值建议。结果表明:波形钢腹板工字钢梁跨中处受压上翼缘板宽厚比小于23、支点处下翼缘板宽厚比小于19时可满足结构稳定性要求;跨中处波形钢腹板高厚比不宜大于265,支点处腹板厚度由抗剪需求控制;波形钢腹板横向刚度大于平钢板,横隔板间距可放宽至支点处翼缘板宽度的35倍;波形钢腹板工字钢结合板梁桥的钢梁高跨比可取1/28~1/18,经济合理高跨比约为1/25。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号