首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
南盘江特大桥主桥为416 m劲性骨架外包混凝土拱桥,是云桂铁路全线的重难点工程,也是世界铁路中斜拉扣挂+分环分段组合法模筑拱圈混凝土最大跨度的混凝土拱桥.本桥交界墩高102 m,综合利用塔吊、缆索吊及工业电梯等设施配合自升式液压爬模系统进行交界墩施工.综合介绍了交界墩自升式爬模使用原理、施工工艺、施工过程安全、质量控制措施.通过交界墩实际施工效果来看,该技术充分保证了交界墩的安全、质量和施工进度,可为类似工程的应用提供参考.  相似文献   

2.
南盘江特大桥是云桂铁路全线的重难点控制性工程,也是世界客货共线铁路中斜拉扣挂+分环分段组合法模筑拱圈混凝土最大跨度的劲性骨架外包混凝土拱桥,施工难度位居世界同类桥梁前列,其主桥为单跨416 m上承式劲性骨架外包混凝土拱桥.根据施工全过程中实际发生的各项影响桥梁应力、索力与变形的参数,结合施工过程中监测的各阶段应力、索力与变形数据,及时分析与理论计算预测值的差异并找出原因,提出修正对策,确保全桥建成以后桥梁的应力状态和外形曲线与设计达到最佳吻合.为后续同类桥梁劲性骨架安装和拱圈外包混凝土保质量、保安全、快速、高效施工提供参考.  相似文献   

3.
赣龙铁路吊钟岩特大桥主桥为劲性钢管骨架钢筋混凝土上承式拱桥,设计跨度140 m。拱肋采用劲性钢管骨架,转体合龙,挂模施工外包混凝土,较好地解决了桥梁施工对桥下公路行车的干扰。介绍劲性钢管骨架计算方法、结构设计及骨架转体构造。  相似文献   

4.
云桂铁路南盘江特大桥主桥为单跨416 m上承式劲性骨架钢筋混凝土拱桥,该桥钢管拱共分为39个节段吊装,单节段最重约130 t,采用斜拉扣挂悬臂拼装施工工艺。结合现场地质条件及钢管拱吊装的受力特点,研发并采用了组合式桩基承台锚碇,其主要由桩基、承台、锚固钢筋、锚块、锚座、销轴、锚箱组成。该锚碇结构受力明确,安全可靠,同时还实现了工程"永临结合",节约了施工成本,为后续类似桥梁施工提供了借鉴。  相似文献   

5.
主拱圈混凝土浇筑是建造600 m跨径钢管混凝土劲性骨架铁路拱桥的关键环节,为此提出某600 m跨径钢管混凝土劲性骨架拱桥的主拱圈混凝土浇筑方案,具体为:采用四工作面法,主拱圈截面分为6环,并设1组斜拉扣索辅助调载,适当调整1环混凝土在各工作面上的浇筑顺序和节段长度。采用有限元法对施工全过程进行模拟分析,验证该方案可行性。结果表明:在主拱圈拱脚和控制性截面应力过程线峰值处分别设置工作面,且首先在第二工作面上浇筑一定长度的混凝土节段,再同时浇筑第一、第二工作面混凝土节段,可有效降低浇筑过程中结构的瞬时应力;通过在主拱圈拱脚附近设置斜拉扣索并适时调整索力作为辅助调载措施,可达到调整拱脚截面应力和保持拱轴线合理下挠的目的;通过合理设置工作面和辅助措施,适当确定混凝土浇筑顺序和节段长度,可保证主拱圈外包混凝土浇筑期间结构应力和变形控制在容许范围内。  相似文献   

6.
针对大跨度劲性骨架拱桥施工阶段受力复杂、外包混凝土浇筑方案对劲性骨架受力影响较大的特点,提出基于最优化理论的外包混凝土分环分段数量设置方法。将主弦管应力与目标应力差值的平方设为目标函数,分环分段数量为设计变量,利用最优化原理建立外包混凝土分环分段浇筑状态下,可测变量之间的性态约束关系。以某在建主跨600 m的上承式钢管混凝土劲性骨架拱桥为例,通过最优化原理求取外包混凝土分环分段数量设置的最优解,并进一步对肋间横联结构及混凝土浇筑顺序进行优化计算。结果表明:提出的基于最优化计算理论的外包混凝土分环分段设计方法是可行的;原设计方案主弦管压应力为342.6 MPa,优化后主弦管压应力仅为309.1 MPa,降低幅度可达9.8%;原设计方案拱顶最大下挠值为654 mm,优化后拱顶最大下挠值仅为629 mm,下挠值减少25 mm;肋间横联设计方面,建议采用X形空间横联而非采用I形平面横联,因前者在外包混凝土浇筑阶段的稳定性明显优于后者。  相似文献   

7.
劲性骨架法是目前特大跨径混凝土拱桥施工的主要方法,钢管拱的加工制作是钢管混凝土拱桥施工成败的关键之一。以云桂铁路南盘江特大桥钢管拱加工制作为例,从劲性骨架加工制作的总体规划、技术准备、材料的预处理、片段的分段制作程序、钢管拱卧拼装匹配组装、钢管拱吊装节段立拼组装等进行了详细的介绍,以供同类工程参考。  相似文献   

8.
研究目的:在大跨度钢管混凝土劲性骨架拱桥中,劲性骨架安装线形直接影响成拱线形。若控制不当,甚至会造成拱肋合龙困难。依托夜郎河大桥工程实例,通过仿真分析拱肋斜拉扣挂法悬臂拼装架设全过程,结合现场内力及线形实时监控,研究分析大跨径劲性骨架拱桥拱肋施工控制技术。研究结论:(1)在劲性骨架悬臂拼装时采取拱肋线形和索力双控,以控制拱肋线形为主;(2)在进行仿真分析时,采用节段竖向“0”位移控制索力大小,通过对扣索索力和控制点标高进行调整,竖向位移控制在1 mm误差范围内,得出此时扣索索力;(3)合龙前进行线形两岸联测以及全桥复测,根据拱肋内力及线形的监控结果,通过扣索、缆风索对拱肋进行全面线形、内力合理有效调整;(4)本文提出的拱肋施工控制方法,可有效保证成拱线形和结构应力满足设计和规范要求,对斜拉扣挂法悬臂拼装架设拱肋具有参考价值。  相似文献   

9.
沪蓉国道主干线湖北宜昌至恩施高速公路支井河特大桥位于湖北省巴东县野三关镇,主桥为1-430 m上承式钢管混凝土拱桥。双肋拱肋纵向分30个节段,安装利用缆索吊装系统,采用"两岸无风缆双肋整体对称悬拼、齐头并进至跨中合龙的斜拉扣挂法"施工技术。介绍拱肋节段拼装缆索起重机系统、斜拉扣挂系统、无风缆双肋整体分段悬拼施工工艺等。  相似文献   

10.
悬臂浇筑与劲性骨架组合施工法是一种新型的钢筋混凝土拱桥施工方法,相较于悬臂浇筑施工,不仅可以缩短拱圈悬臂浇筑段的长度,减轻悬臂的质量,降低对扣锚系统的要求,而且能够尽快形成拱结构,从而减少施工风险,缩短工期,提高钢筋混凝土拱桥的经济性。从主拱圈自身受力特点、扣索力的利用效率、施工过程最大扣索力、拱圈拉应力等几个方面分析了悬臂浇筑与劲性骨架组合法中劲性骨架段合理长度的选取。结果表明劲性骨架段长度取跨度的0. 38~0. 54倍最为合理。  相似文献   

11.
武九客运专线铁路(82+154+88)m矮塔斜拉桥设计   总被引:2,自引:2,他引:0  
武汉至九江客运专线铁路西南下行联络线特大桥主桥采用(82+154+88)m矮塔斜拉桥跨越3条既有铁路。通过对矮塔斜拉桥结构形式、主梁构造、桥塔及斜拉索锚固型式、施工方法等进行设计研究,得出如下结论:桥梁满足功能性要求;新型抗滑鞍座能够起到有效锚固作用;转体施工降低了对铁路运营的干扰;桥梁各项指标均满足相关规范的要求。  相似文献   

12.
针对东莞水道特大桥主桥结构(主跨拱肋采用钢管混凝土拱形空间桁架结构,主拱肋轴线采用悬链线)和扣挂法施工的特点,采用正装法进行主拱钢结构施工中的线型控制分析。在扣索索力调整阶段,将该扣索索力对结构的作用作为外荷载加在相应位置,已完成调索的扣索作为结构的一部分参与结构受力。索力调整的原则是,使各节段变位尽可能接近裸拱自重挠度,且使已完成调索的各扣索索力变化较小。施工阶段线型控制分析过程中,拱肋轴线始终在理想拱轴线附近。  相似文献   

13.
宣杭铁路东苕滇特大桥主桥采用计算跨度112m的尼尔森体系提蓝式钢管混凝土系杆拱桥,拱肋制造以折代曲,采用厂内半跨立体预拼、现场分段立体组拼、缆索吊机起吊、扣索塔架斜拉扣挂分段悬拼方案进行施工。  相似文献   

14.
为研究斜拉索塔端锚固构造在索力作用下的应力分布情况,采用整体计算得到最不利荷载工况,并将产生最大索力的斜拉索对应位置的塔端锚固构造作为分析对象,采用有限混合单元法对某独塔斜拉桥进行了计算分析,得到了索塔钢管壁和钢锚梁各部位的应力情况。  相似文献   

15.
沪通长江大桥主航道桥为公铁两用双主塔钢桁梁斜拉桥,主塔总高度为330 m,采用C60钢筋混凝土结构,塔柱横梁以上为倒Y形。为满足斜拉索索盘上桥、上塔柱区域重型钢锚梁高精度吊装等需求,在中塔柱处采用2700 t·m自升式塔吊+托架+附墙结构的附壁式设计,托架结构由钢靴、压杆、压杆附墙、压杆联结系、支撑框组成。采用MIDAS/Civil软件分析了塔吊与主塔的共振影响;通过张拉精轧螺纹筋、槽口灌浆保证钢靴处有效传力,灌注微膨胀混凝土保证压杆处刚度及稳定性;通过空载、静载和动载试验以及信息化监控确保施工期间整体结构安全。附壁塔吊相比于传统落地式塔吊,既可充分发挥吊重能力,又能显著减少标准节用量及安装工期。  相似文献   

16.
目前我国高速公路、市政道路与铁路发生交叉越来越多,如何选择合理的跨越方案,减少对铁路运营的影响,是当前需要重点研究的课题。就上跨铁路的桥梁方案进行研究,提出了预应力混凝土T形刚构转体、预应力混凝土独塔单索面斜拉桥、预应力混凝土T梁的桥梁方案,并对各个方案进行全面评价,并选择对铁路影响最小的T形刚构转体方案跨越,显著减少对铁路的影响,并确保铁路运营的安全。  相似文献   

17.
西江特大桥是广佛江珠城际铁路的重要桥梁,为取得主桥合理的桥式方案,遵循"安全、实用、经济、美观"的设计原则,按照单向通航和双向通航的净空要求,采用钢桁拱桥、钢桁斜拉桥及矮塔斜拉桥,对4种桥型设计方案进行对比分析计算,综合考虑施工难度、景观效果、通航条件及工程造价等因素,最终得出双孔252 m钢桁拱桥为推荐方案。  相似文献   

18.
章耀林 《铁道建筑》2020,(5):30-33,37
重庆鹅公岩轨道专用桥桥跨布置为(50+210+600+210+50)m,是目前世界上跨度最大的自锚式悬索桥.该桥加劲梁为5跨连续梁,锚跨和锚固段为混凝土梁,其余为钢箱梁.加劲梁锚固段采用可滑移现浇支架施工,锚跨采用常规现浇支架施工,边跨采用顶推法施工,中跨采用斜拉扣挂法施工.加劲梁先合龙边跨,后合龙中跨,最后合龙锚跨.通过在塔梁交叉处设置纵向位置调整系统、在混凝土锚跨下设置可纵向滑移支架主动控制合龙时机,避免了天气条件的不利影响,缩短了工期;通过有效控制锚固段及锚跨混凝土梁段的变形,减少施工对混凝土的扰动,从而控制混凝土梁段的质量;通过优化支架结构降低支架复杂程度和安全风险,从而降低支架费用.该桥加劲梁的合龙技术,可为同类桥梁施工提供借鉴.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号