首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The integrated modeling of land use and transportation choices involves analyzing a continuum of choices that characterize people’s lifestyles across temporal scales. This includes long-term choices such as residential and work location choices that affect land-use, medium-term choices such as vehicle ownership, and short-term choices such as travel mode choice that affect travel demand. Prior research in this area has been limited by the complexities associated with the development of integrated model systems that combine the long-, medium- and short-term choices into a unified analytical framework. This paper presents an integrated simultaneous multi-dimensional choice model of residential location, auto ownership, bicycle ownership, and commute tour mode choices using a mixed multidimensional choice modeling methodology. Model estimation results using the San Francisco Bay Area highlight a series of interdependencies among the multi-dimensional choice processes. The interdependencies include: (1) self-selection effects due to observed and unobserved factors, where households locate based on lifestyle and mobility preferences, (2) endogeneity effects, where any one choice dimension is not exogenous to another, but is endogenous to the system as a whole, (3) correlated error structures, where common unobserved factors significantly and simultaneously impact multiple choice dimensions, and (4) unobserved heterogeneity, where decision-makers show significant variation in sensitivity to explanatory variables due to unobserved factors. From a policy standpoint, to be able to forecast the “true” causal influence of activity-travel environment changes on residential location, auto/bicycle ownership, and commute mode choices, it is necessary to capture the above-identified interdependencies by jointly modeling the multiple choice dimensions in an integrated framework.  相似文献   

2.
3.
Cities around the world are trying out a multitude of transportation policy and investment alternatives with the aim of reducing car-induced externalities. However, without a solid understanding of how people make their transportation and residential location choices, it is hard to tell which of these policies and investments are really doing the job and which are wasting precious city resources. The focus of this paper is the determinants of car ownership and car use for commuting. Using survey data from 1997 to 1998 collected in New York City, this paper uses discrete choice econometrics to estimate a model of the choices of car ownership and commute mode while also modeling the related choice of residential location.The main story told by this analysis is that New Yorkers are more sensitive to changes in travel time than they are to changes in travel cost. The model predicts that the most effective ways to reduce both auto ownership and car commuting involve changing the relative travel times for cars and transit, making transit trips faster by increasing both the frequency and the speed of service and making auto trips slower – perhaps simply by allowing traffic congestion. Population density also appears to have a substantial effect on car ownership in New York.  相似文献   

4.
Sharma  Bibhuti  Hickman  Mark  Nassir  Neema 《Transportation》2019,46(1):217-232

This research aims to understand the park-and-ride (PNR) lot choice behaviour of users i.e., why PNR user choose one PNR lot versus another. Multinomial logit models are developed, the first based on the random utility maximization (RUM) concept where users are assumed to choose alternatives that have maximum utility, and the second based on the random regret minimization (RRM) concept where users are assumed to make decisions such that they minimize the regret in comparison to other foregone alternatives. A PNR trip is completed in two networks, the auto network and the transit network. The travel time of users for both the auto network and the transit network are used to create variables in the model. For the auto network, travel time is obtained using information from the strategic transport network using EMME/4 software, whereas travel time for the transit network is calculated using Google’s general transit feed specification data using a backward time-dependent shortest path algorithm. The involvement of two different networks in a PNR trip causes a trade-off relation within the PNR lot choice mechanism, and it is anticipated that an RRM model that captures this compromise effect may outperform typical RUM models. We use two forms of RRM models; the classical RRM and µRRM. Our results not only confirm a decade-old understanding that the RRM model may be an alternative concept to model transport choices, but also strengthen this understanding by exploring differences between two models in terms of model fit and out-of-sample predictive abilities. Further, our work is one of the few that estimates an RRM model on revealed preference data.

  相似文献   

5.
Surveys of behavior could benefit from information about people’s relative ranking of choice alternatives. Rank ordered data are often collected in stated preference surveys where respondents are asked to rank hypothetical alternatives (rather than choose a single alternative) to better understand their relative preferences. Despite the widespread interest in collecting data on and modeling people’s preferences for choice alternatives, rank-ordered data are rarely collected in travel surveys and very little progress has been made in the ability to rigorously model such data and obtain reliable parameter estimates. This paper presents a rank ordered probit modeling approach that overcomes limitations associated with prior approaches in analyzing rank ordered data. The efficacy of the rank ordered probit modeling methodology is demonstrated through an application of the model to understand preferences for alternative configurations of autonomous vehicles (AV) using the 2015 Puget Sound Regional Travel Study survey data set. The methodology offers behaviorally intuitive model results with a variety of socio-economic and demographic characteristics, including age, gender, household income, education, employment and household structure, significantly influencing preference for alternative configurations of AV adoption, ownership, and shared usage. The ability to estimate rank ordered probit models offers a pathway for better utilizing rank ordered data to understand preferences and recognize that choices may not be absolute in many instances.  相似文献   

6.
Latent choice set models that account for probabilistic consideration of choice alternatives during decision making have long existed. The Manski model that assumes a two-stage representation of decision making has served as the standard workhorse model for discrete choice modeling with latent choice sets. However, estimation of the Manski model is not always feasible because evaluation of the likelihood function in the Manski model requires enumeration of all possible choice sets leading to explosion for moderate and large choice sets. In this study, we propose a new group of implicit choice set generation models that can approximate the Manski model while retaining linear complexity with respect to the choice set size. We examined the performance of the models proposed in this study using synthetic data. The simulation results indicate that the approximations proposed in this study perform considerably well in terms of replicating the Manski model parameters. We subsequently used these implicit choice set models to understand latent choice set considerations in household auto ownership decisions of resident population in the Southern California region. The empirical results confirm our hypothesis that certain segments of households may only consider a subset of auto ownership levels while making decisions regarding the number of cars to own. The results not only underscore the importance of using latent choice models for modeling household auto ownership decisions but also demonstrate the applicability of the approximations proposed in this study to estimate these latent choice set models.  相似文献   

7.
Three of the most highly regarded disaggregate mode split models incorporate very different estimates of the responsiveness, or elasticity, of mode choice to changes in auto travel times and costs. These differences appear to be due in part to the varying specifications used by the model, and particularly whether certain variables (such as a dummy variable for CBD destinations or automobile ownership) are included in addition to the more traditional variables (such as travel time, cost, and household income). More research is needed on the implications of the theory of traveler choices for model specification and the effect of alternative, but theoretically justifiable, specifications on elasticity estimates. Until this research reduces our uncertainty about the elasticity of demand, analysts evaluating transportation policies should assess the sensitivity of their results to the range of plausible elasticities or models.  相似文献   

8.
Daisy  Naznin Sultana  Liu  Lei  Millward  Hugh 《Transportation》2020,47(2):763-792

Suburban development patterns, flexible work hours, and increasing participation in out-of-home activities are making the travel patterns of individuals more complex, and complex trip chaining could be a major barrier to the shift from drive-alone to public transport. This study introduces a cohort-based approach to analyse trip tour behaviors, in order to better understand and model their relationships to socio-demographics, trip attributes, and land use patterns. Specifically, it employs worker population cohorts with homogenous activity patterns to explore differences and similarities in tour frequency, trip chaining, and tour mode choices, all of which are required for travel demand modeling. The paper shows how modeling of these important tour variables may be improved, for integration into an activity-based modeling framework. Using data from the Space–Time Activity Research (STAR) survey for Halifax, Canada, five clusters of workers were identified from their activity travel patterns. These were labeled as extended workers, 8 to 4 workers, shorter work-day workers, 7 to 3 workers, and 9 to 5 workers. The number of home-based tours per day for all clusters were modeled using a Poisson regression model. Trip chaining was then modeled using an Ordered Probit model, and tour mode choice was modeled using a Multinomial logit (MNL) model. Statistical analysis showed that socio-demographic characteristics and tour attributes are significant predictors of travel behavior, consistent with existing literature. Urban form characteristics also have a significant influence on non-workers’ travel behavior and tour complexity. The findings of this study will assist in the future evaluation of transportation projects, and in land-use policymaking.

  相似文献   

9.
The multinomial probit model of travel demand is considerably more general but much less tractable than the better-known multinomial logit model. In an effort to determine the effects of using the relatively simple logit model in situations where the assumptions of probit modeling are satisfied but those of logit modeling are not, the accuracy of the multinomial logit model as an approximation to a variety of three-alternative probit models has been evaluated. Multinomial logit can give highly erroneous estimates of the choice probabilities of multinomial probit models. However, logit models appear to give asymptotically accurate estimates of the ratios of the coefficients of the systematic components of probit utility functions, even when the logit choice probabilities differ greatly from the probit ones. Large estimation data sets are not necessarily needed to enable likelihood ratio tests to distinguish three-alternative probit models from logit models that give seriously erroneous estimates of the probit choice probabilities. Inclusion of alternative-specific dummy variables in logit utility functions cannot be relied upon to reduce significantly the errors of logit approximations to the choice probabilities of probit models whose utility functions do not contain the dummies.  相似文献   

10.
The multinomial probit model of travel demand is considerably more general but much less tractable than the better-known multinomial logit model. In an effort to determine the effects of using the relatively simple logit model in situations where the assumptions of probit modeling are satisfied but those of logit modeling are not, the accuracy of the multinomial logit model as an approximation to a variety of three-alternative probit models has been evaluated. Multinomial logit can give highly erroneous estimates of the choice probabilities of multinomial probit models. However, logit models appear to give asymptotically accurate estimates of the ratios of the coefficients of the systematic components of probit utility functions, even when the logit choice probabilities differ greatly from the probit ones. Large estimation data sets are not necessarily needed to enable likelihood ratio tests to distinguish three-alternative probit models from logit models that give seriously erroneous estimates of the probit choice probabilities. Inclusion of alternative-specific dummy variables in logit utility functions cannot be relied upon to reduce significantly the errors of logit approximations to the choice probabilities of probit models whose utility functions do not contain the dummies.  相似文献   

11.
The modeling of travel decision making has been a popular topic in transportation planning. Previous studies focused on random-utility discrete choice models and machine learning methods. This paper proposes a new modeling approach that utilizes a mixed Bayesian network (BN) for travel decision inference. The authors use a predetermined BN structure and calculate priori and posterior probability distributions of the decision alternatives based on the observed explanatory variables. As a “utility-free” decision inference method, the BN model releases the linear structure in the utility function but assumes the traffic level of service variables follow multivariate Gaussian distribution conditional on the choice variable. A real-world case study is conducted by using the regional travel survey data for a two-dimensional decision modeling of both departure time choice and travel mode choice. The results indicate that a two-dimensional mixed BN provides better accuracy than decision tree models and nested logit models. In addition, one can derive continuous elasticity with respect to each continuous explanatory variable for sensitivity analysis. This new approach addresses a research gap in probabilistic travel decision making modeling as well as two-dimensional travel decision modeling.  相似文献   

12.
The daily activity-travel patterns of individuals often include interactions with other household members, which we observe in the form of joint activity participation and shared rides. Explicit representation of joint activity patterns is a widespread deficiency in extant travel forecasting models and remains a relatively under-developed area of travel behavior research. In this paper, we identify several spatially defined tour patterns found in weekday household survey data that describe this form of interpersonal decision-making. Using pairs of household decision makers as our subjects, we develop a structural discrete choice model that predicts the separate, parallel choices of full-day tour patterns by both persons, subject to the higher level constraint imposed by their joint selection of one of several spatial interaction patterns, one of which may be no interaction. We apply this model to the household survey data, drawing inferences from the household and person attributes that prove to be significant predictors of pattern choices, such as commitment to work schedules, auto availability, commuting distance and the presence of children in the household. Parameterization of an importance function in the models shows that in making joint activity-travel decisions significantly greater emphasis is placed on the individual utilities of workers relative to non-workers and on the utilities of women in households with very young children. The model and methods are prototypes for tour-based travel forecasting systems that seek to represent the complex interaction between household members in an integrated model structure.  相似文献   

13.
In several travel choice situations (e.g. automobile ownership level and trip frequency) the alternatives available to an individual randomly chosen from the population exhibit some internal choice-related ranking: the choice of a given alternative implies that all lower-ranked alternatives have been chosen. Such alternatives are referred to as “nested”. This paper presents a model for estimating choice probabilities among nested alternatives. The model is devised from the well known logit model and uses existing logit maximum-likelihood estimation techniques (and computer packages). The approach is shown to be more attractive than the multinomial logit and linear regression models, from a theoretical point of view, yet cheaper than the multinomial probit model. The model is developed in a disaggregate, utility maximization framework. An example application, estimating probabilities of trip frequencies by elderly individuals is presented.  相似文献   

14.
Understanding variability in individual behaviour is crucial for the comprehension of travel patterns and for the development and evaluation of planning policies. But, with only one notable exception, there are no studies on the intrinsic variability in the individual preferences for mode choices in absence of external changes in the transport infrastructures. This requires using continuous panel data. Few papers have studied mode choice with continuous panel data but mainly focused on the panel correlation. In this work we use a six-week travel diary survey to study the intrinsic variability in the individual preferences for mode choices, the effect of long period plans and habitual behaviour in the daily mode choices. Mixed logit models are estimated that account for the above effects as well as for systematic and random heterogeneity over individual preferences and responses. We also account for correlation over several time periods. Our results suggest that individual tastes for time and cost are fairly stable but there is a significant systematic and random heterogeneity around these mean values and in the preferences for the different alternatives. We found that there is a strong inertia effect in mode choice that increases with (or is reinforced by) the number of time the same tour is repeated. The sequence of mode choice made is influenced by the duration of the activity and the weekly structure of the activities  相似文献   

15.
The logit modeling methodology is applied to include transit access mode choices in conjunction with the automobile vs. transit travel choice decision. The practical problems that arise when the choice set expands beyond two alternatives are identified and addressed. In particular, the complexities that must be resolved in order to use ULOGIT or a similar program include the definition of independent choices (the Independence of Irrelevant Alternatives Property (IIA)), a sequential binary or multinomial logit model (MNL) structure, specification and testing of variables, and the potential for transferring the model to new areas for transportation planning purposes. It was found that the available options cannot be reduced to a single modeling strategy. However, the analysis showed certain concepts which can reduce the uncertainties in related applications of the logit model. It was determined that as many independent choices as possible should be hypothesized and tested for inclusion in the model, but the IIA must be carefully considered because it limits the number of choices that can be represented. Although binary calibration techniques are conceptually appealing, the large number of calibrations for studies involving more than three alternatives suggests that the MNL approach is most practical. Application of the MNL model requires that not only must variables be selected that best explain choice, but they must also be placed in the disutility function of the specific mode or modes to which they are most unique. Finally, it was shown that if choice sets and homogeneous market segments are properly defined, the models can be transferred among different urban areas even though the urban areas exhibit different aggregate characteristics. All observations lead to the general conclusion that the logit modeling methodology can now best be advanced with implementation experience.  相似文献   

16.
This paper presents a model for the choice of activity-type and timing, incorporating the dynamics of scheduling, estimated on a six-week travel diary. The main focus of the study is the inclusion of past history of activity involvement and its influence on current activity choice. The econometric formulation adopted, explicitly accounts both for correlation across alternatives and for state dependency. The results indicate that behavioral variables are superior to socio-economic variables and that consideration of the correlation pattern over alternatives clearly improves the fit of the model. This is a first but significant contribution to changing the current static demand models into dynamic activity based ones. The availability of other multi-week travel surveys and the progress made recently on advanced econometric techniques should encourage the transferability of this study to different regions or model scale.  相似文献   

17.
Traditional trip distribution models usually ignore the fact that destination choices are made individually in addition to aggregated factors, such as employment and average travel costs. This paper proposes a disaggregated analysis of destination choices for intercity trips, taking into account aggregated characteristics of the origin city, an impedance measurement and disaggregated variables related to the individual, by applying nonparametric Decision Tree (DT) algorithms. Furthermore, each algorithm’s performance is compared with traditional gravity models estimated from a stepwise procedure (1) and a doubly constrained procedure (2). The analysis was based on a dataset from the 2012 Origin-Destination Survey carried out in Bahia, Brazil. The final selected variables to describe the destination choices were population of the origin city, GDP of the origin city and travel distances at an aggregated level, as well as the variables: age, occupation, level of education, income (monthly), number of cars per household and gender at a disaggregated one. The comparison of the DT models with gravity models demonstrated that the former models provided better accuracy when predicting the destination choices (trip length distribution, goodness-of-fit measures and qualitative perspective). The main conclusion is that Decision Tree algorithms can be applied to distribution modeling to improve traditional trip distribution approaches by assimilating the effect of disaggregated variables.  相似文献   

18.
ABSTRACT

The growing availability of geotagged big data has stimulated substantial discussion regarding their usability in detailed travel behaviour analysis. Whilst providing a large amount of spatio-temporal information about travel behaviour, these data typically lack semantic content characterising travellers and choice alternatives. The inverse discrete choice modelling (IDCM) approach presented in this paper proposes that discrete choice models (DCMs) can be statistically inverted and used to attach additional variables from observations of travel choices. Suitability of the approach for inferring socioeconomic attributes of travellers is explored using mode choice decisions observed in London Travel Demand Survey. Performance of the IDCM is investigated with respect to the type of variable, the explanatory power of the imputed variable, and the type of estimator used. This method is a significant contribution towards establishing the extent to which DCMs can be credibly applied for semantic enrichment of passively collected big data sets while preserving privacy.  相似文献   

19.
The paper presents a comprehensive investigation on household level commuting mode, car allocation and car ownership level choices of two-worker households in the City of Toronto. A joint econometric model and a household travel survey dataset are used for empirical investigations. Empirical models reveal that significant substitution patterns exist between auto driving and all other mode choices in two-worker households. It is revealed that, female commuters do not prefer auto driving, but in case of a one car (and two commuters with driving licenses) household, a female commuter gets more preference for auto driving option than the male commuter. Reverse commuting (commuting in opposite direction of home to central business district) plays a critical role on household level car allocation choices and in defining the stability of commuting behaviour of two-worker households. Two worker households in higher income zones and with longer commuting distances tend to have higher car ownership levels than others. However, higher transit accessibility to jobs reduces household car ownership levels. The study reveals that both increasing two worker households and reverse commuting would increase dependency on private car for commuting.  相似文献   

20.
We present an integrated activity-based discrete choice model system of an individual’s activity and travel schedule, for forecasting urban passenger travel demand. A prototype demonstrates the system concept using a 1991 Boston travel survey and transportation system level of service data. The model system represents a person’s choice of activities and associated travel as an activity pattern overarching a set of tours. A tour is defined as the travel from home to one or more activity locations and back home again. The activity pattern consists of important decisions that provide overall structure for the day’s activities and travel. In the prototype the activity pattern includes (a) the primary – most important – activity of the day, with one alternative being to remain at home for all the day’s activities; (b) the type of tour for the primary activity, including the number, purpose and sequence of activity stops; and (c) the number and purpose of secondary – additional – tours. Tour models include the choice of time of day, destination and mode of travel, and are conditioned by the choice of activity pattern. The choice of activity pattern is influenced by the expected maximum utility derived from the available tour alternatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号