首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Zhu  Yadi  Chen  Feng  Wang  Zijia  Deng  Jin 《Transportation》2019,46(6):2269-2289

The development of new routes and stations, as well as changes in land use, can have significant impacts on public transit ridership. Thus, transport departments and governments should seek to determine the level and spatio-temporal dependency of these impacts with the aim of adjusting services or improving planning. However, existing studies primarily focus on predicting ridership, and pay relatively little attention to analyzing the determinants of ridership from temporal and spatial perspectives. Consequently, no comprehensive cognition of the spatio-temporal relationship between station ridership and the built environment can be obtained from previous models, which makes them unable to facilitate the optimization of transportation demands and services. To rectify this problem, we have employed a Bayesian negative binomial regression model to identify the significant impact factors associated with entry/exit ridership at different periods of the day. Based on this model, we formulated geographically weighted models to analyze the spatial dependency of these impacts over different periods. The spatio-temporal relationship between station ridership and the built environment was analyzed using data from Beijing. The results reveal that the temporal impacts of most ridership determinants are related to the passenger trip patterns. Furthermore, the spatial impacts correspond with the determinants’ spatial distribution, and the results give some implications on urban and transportation planning. This analysis gives a common analytical framework analyzing impacts of urban characteristics on ridership, and extending researches on how we capture the impacts of urban and other factors on ridership from a comprehensive perspective.

  相似文献   

2.
The current study contributes to the literature on transit ridership by considering daily boarding and alighting data from a recently launched commuter rail system in Orlando, Florida – SunRail. The analysis is conducted based on daily boarding and alighting data for 10 months for the year 2015. With the availability of repeated observations for every station, the potential impact of common unobserved factors affecting ridership variables are considered. The current study develops an estimation framework, for boarding and alighting separately, that accounts for these unobserved effects at multiple levels – station, station-week and station-day. In addition, the study examines the impact of various observed exogenous factors such as station level, transportation infrastructure, transit infrastructure, land use, built environment, sociodemographic and weather variables on ridership. The model system developed will allow us to predict ridership for existing stations in the future as well as potential ridership for future expansion sites.  相似文献   

3.
ABSTRACT

Ridesourcing services such as Uber are nowadays a common feature within available transport options of many cities around the world (E.g. London & San Francisco). There has been much publicity about the potential impacts of ridesourcing services and how (or if) they should be managed or regulated without an objective understanding of who uses these services and why, as well as its current and future implications for public transport (PT).

Ridesourcing is part of a broader tech-driven, mobile app-based sharing phenomenon – the ‘sharing economy’ – which has disrupted traditional market models and industries, for example, the transport industry, where new players such as Uber have emerged and have quickly become part of the urban transport landscape. Uber has been at the forefront in disrupting the transport sector since its first launch in 2010 (San Francisco, USA). Since its launch, Uber has generated extensive media coverage and debate among policymakers, transport planners and transport authorities on how these services are affecting traditional transport modes such as buses and taxis. However, without objective empirical data – in terms of impacts on trip making characteristics, PT ridership and congestion – policymakers and transport regulators are yet to fully understand the real impacts ridesourcing services are having on the transport network.

This paper is part of broader research that aims to provide insights and empirical-based evidence on how Uber services are used (UberX and Uberpool) in London. A comprehensive survey was undertaken using a detailed questionnaire, issued to UberX and Uberpool users in London to gather detailed data on who uses the Uber services, why they use it and what are the trip purposes, in order to understand Uber user demographics and what effects (if any) Uber services are having on PT usage and trip making characteristics in London. The final findings provide important insights on Uber user demographics, trip purposes, types of trips replaced, impact on car ownership and why travellers use Uber services.  相似文献   

4.
This paper investigates temporal and weather-related variation in taxi trips in New York City. A taxi trip data-set with 147 million records covering 10 months of activity is used. It is shown that there are substantial variations in ridership, taxi supply, trip distance, and pickup frequency for different time periods and weather conditions. These variations, in turn, cause variations in driver revenues which is one of the main measures of taxi supply–demand equilibrium. The findings are then used to discuss the anticipated impacts of two recently enacted taxi regulation changes: the first fare increase since 2006 and the E-Hail pilot program which allows taxi hailing with smart phone applications. The fare increase is estimated to cause varying levels of revenue increase for different time periods. E-Hail apps are not expected to offer considerable improvements at all times, but rather when both adequate taxi supply and demand occur simultaneously.  相似文献   

5.
Abstract

Providing efficient public transportation has been recognized as a potential way of alleviating congestion, improving mobility, mitigating air pollution, and reducing energy consumption. Many people use public transportation systems for their daily commute, while others use different transportation modes (e.g. cars, taxis, carpools, etc.). Inexpensive fares with good transit service encourages ridership, and the resulting revenue may be used to provide better service. Optimization of transit service frequency and its associated fare structure is desirable in order to increase revenue at reasonable transit operating expenditure. The objective of the study reported here is to maximize profit subject to service capacity constraint, while elastic demand is considered. The solution methodology is developed and applied to solve the profit maximization problem in a case study based on Newark, NJ, USA. Numerical results, including optimal solutions and sensitivity analyses, are presented. It is found that an optimal temporal headway and differential fare structure that maximizes total profit for the studied subway system can be efficiently solved.  相似文献   

6.
Public subsidy of transit services has increased dramatically in recent years, with little effect on overall ridership. Quite obviously, a clear understanding of the factors influencing transit ridership is central to decisions on investments in and the pricing and deployment of transit services. Yet the literature about the causes of transit use is quite spotty; most previous aggregate analyses of transit ridership have examined just one or a few systems, have not included many of the external, control variables thought to influence transit use, and have not addressed the simultaneous relationship between transit service supply and consumption. This study addresses each of these shortcomings by (1) conducting a cross-sectional analysis of transit use in 265 US urbanized areas, (2) testing dozens of variables measuring regional geography, metropolitan economy, population characteristics, auto/highway system characteristics, and transit system characteristics, and (3) constructing two-stage simultaneous equation regression models to account for simultaneity between transit service supply and consumption. We find that most of the variation in transit ridership among urbanized areas – in both absolute and relative terms – can be explained by factors outside of the control of public transit systems: (1) regional geography (specifically, area of urbanization, population, population density, and regional location in the US), (2) metropolitan economy (specifically, personal/household income), (3) population characteristics (specifically, the percent college students, recent immigrants, and Democratic voters in the population), and (4) auto/highway system characteristics (specifically, the percent carless households and non-transit/non-SOV trips, including commuting via carpools, walking, biking, etc.). While these external factors clearly go a long way toward determining the overall level of transit use in an urbanized area, we find that transit policies do make a significant difference. The observed range in both fares and service frequency in our sample could account for at least a doubling (or halving) of transit use in a given urbanized area. Controlling for the fact that public transit use is strongly correlated with urbanized area size, about 26% of the observed variance in per capita transit patronage across US urbanized areas is explained in the models presented here by service frequency and fare levels. The observed influence of these two factors is consistent with both the literature and intuition: frequent service draws passengers, and high fares drive them away.  相似文献   

7.
Ridership estimation is a critical step in the planning of a new transit route or change in service. Very often, when a new transit route is introduced, the existing routes will be modified, vehicle capacities changed, or service headways adjusted. This has made ridership forecasts for the new, existing, and modified routes challenging. This paper proposes and demonstrates a procedure that forecasts the ridership of all transit routes along a corridor when a new bus rapid transit (BRT) service is introduced and existing regular bus services are adjusted. The procedure uses demographic data along the corridor, a recent origin–destination survey data, and new and existing transit service features as inputs. It consists of two stages of transit assignment. In the first stage, a transit assignment is performed with the existing transit demand on the proposed BRT and existing bus routes, so that adjustments to the existing bus services can be identified. This transit assignment is performed iteratively until there is no adjustment in transit services. In the second stage, the transit assignment is carried out with the new BRT and adjusted regular bus services, but incorporates a potential growth in ridership because of the new BRT service. The final outputs of the procedure are ridership for all routes and route segments, boarding and alighting volumes at all stops, and a stop‐by‐stop trip matrix. The proposed ridership estimation procedure is applicable to a new BRT route with and without competing regular bus routes and with BRT vehicles traveling in dedicated lanes or in mixed traffic. The application of the proposed procedure is demonstrated via a case study along the Alameda Corridor in El Paso, Texas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
A growing base of research adopts direct demand models to reveal associations between transit ridership and influence factors in recent years. This study is designed to investigate the factors affecting rail transit ridership at both station level and station-to-station level by adopting multiple regression model and multiplicative model respectively, specifically using an implemented Metro system in Nanjing, China, where Metro implementation is on the rise. Independent variables include factors measuring land-use mix, intermodal connection, station context, and travel impedance. Multiple regression model proves 11 variables are significantly associated with Metro ridership at station level: population, employment, business/office floor area, CBD dummy variable, number of major educational sites, entertainment venues and shopping centers, road length, feeder bus lines, bicycle park-and-ride (P&R) spaces, and transfer dummy variable. Results from multiplicative model indicate that factors influencing Metro station ridership may also influence Metro station-to-station ridership, varied by both trip ends (origin/destination) and time of day. In comparison with previous case studies, CBD dummy variable and bicycle P&R are statistically significant to explain Metro ridership in Nanjing. In addition, Metro travel impedance variables have significant influence on station-to-station ridership, representing the basic time-decay relationship in travel distribution. Potential implications of the model results include estimating Metro ridership at station level and station-to-station level by considering the significant variables, recognizing the necessity to establish a cooperative multi-modal transit system, and identifying opportunities for transit-oriented development.  相似文献   

9.
Vehicle electrification is a promising approach towards attaining green transportation. However, the absence of charging stations limits the penetration of electric vehicles. Current approaches for optimizing the locations of charging stations suffer from challenges associated with spatial–temporal dynamic travel demands and the lengthy period required for the charging process. The present article uses the electric taxi (ET) as an example to develop a spatial–temporal demand coverage approach for optimizing the placement of ET charging stations in the space–time context. To this end, public taxi demands with spatial and temporal attributes are extracted from massive taxi GPS data. The cyclical interactions between taxi demands, ETs, and charging stations are modeled with a spatial–temporal path tool. A location model is developed to maximize the level of ET service on the road network and the level of charging service at the stations under spatial and temporal constraints such as the ET range, the charging time, and the capacity of charging stations. The reduced carbon emission generated by used ETs with located charging stations is also evaluated. An experiment conducted in Shenzhen, China demonstrates that the proposed approach not only exhibits good performance in determining ET charging station locations by considering temporal attributes, but also achieves a high quality trade-off between the levels of ET service and charging service. The proposed approach and obtained results help the decision-making of urban ET charging station siting.  相似文献   

10.
Walking is an imperative travel mode, especially for short trips. Walking accessibility, which is defined as the ease of reaching essential destinations in the walk-in catchment area, may affect property prices because residents are more likely to be willing to pay for this attribute. In addition, different categories of public services may have varied influencing directions and magnitude. These two hypotheses are tested in this study. Taking Xiamen, China as a case study, we estimate the cumulative opportunities of public services on foot and develop a set of hedonic pricing models (more specifically, two pre-specified ordinary least squares models, four Box-Cox transformed models, and two spatial econometric models) to estimate, whether and to what extent, walking accessibility contributes to price premiums (or discounts). Using a database of 22,586 second-hand residential properties in 358 multi- or high-storey residential complexes, we find that (1) walking accessibility to public services contributes to the variations in housing prices and plays a role in determining housing prices; (2) different categories of services have vastly divergent, even opposite, influencing impacts; and (3) walking accessibility to primary schools, commercial centers, and sports and cultural centers have positive effects on house prices whereas walking accessibility to comprehensive hospitals adversely affects housing prices. Methodologically, we confirm that spatial econometric methods improve estimation accuracy and have more explanatory power relative to the standard non-spatial models. Robustness check analysis further guarantees the plausibility of this study.  相似文献   

11.
This study identifies the determinants of the empty taxi trip duration (ETTD) by combining three high-resolution databases—geolocation data in New York City, geodatabase of urban planning data, and transportation facilities data. Considering the nature of duration data, hazard-based duration model is proposed to explore the relationships between causal factors and ETTD, coupling with three variations of baseline hazard distribution, i.e., Weibull distribution with heterogeneity, Weibull distribution, and log-logistic. Furthermore, the likelihood ratio test is presented to implement comparisons of three baseline hazard distributions, as well as spatial and temporal transferability of causal factors. The results show significant complementary effects by subway system and competitive effects by city bus and bicycling system, as well as significant impacts of trip length, airport trip, average annual income, and employment rate. Urban built environment, for instance, density of road, public facilities, and recreational sites and ratio of green space, has various impacts on ETTD. The elasticity estimations confirm significant spatial and temporal heterogeneity in impacts on ETTD. In addition, the analysis on elasticity also reveals the considerable impacts of severe traffic congestion on ETTD within Manhattan. The modeling can assist stakeholders in understanding empty taxi movements and measuring taxi system efficiency in urban areas.  相似文献   

12.
Bike Share Toronto is Canada’s second largest public bike share system. It provides a unique case study as it is one of the few bike share programs located in a relatively cold North American setting, yet operates throughout the entire year. Using year-round historical trip data, this study analyzes the factors affecting Toronto’s bike share ridership. A comprehensive spatial analysis provides meaningful insights on the influences of socio-demographic attributes, land use and built environment, as well as different weather measures on bike share ridership. Empirical models also reveal significant effects of road network configuration (intersection density and spatial dispersion of stations) on bike sharing demands. The effect of bike infrastructure (bike lane, paths etc.) is also found to be crucial in increasing bike sharing demand. Temporal changes in bike share trip making behavior were also investigated using a multilevel framework. The study reveals a significant correlation between temperature, land use and bike share trip activity. The findings of the paper can be translated to guidelines with the aim of increasing bike share activity in urban centers.  相似文献   

13.
Utilizing daily ridership data, literature has shown that adverse weather conditions have a negative impact on transit ridership and in turn, result in revenue loss for the transit agencies. This paper extends this discussion by using more detailed hourly ridership data to model the weather effects. For this purpose, the daily and hourly subway ridership from New York City Transit for the years 2010–2011 is utilized. The paper compares the weather impacts on ridership based on day of week and time of day combinations and further demonstrates that the weather’s impact on transit ridership varies based on the time period and location. The separation of ridership models based on time of day provides a deeper understanding of the relationship between trip purpose and weather for transit riders. The paper investigates the role of station characteristics such as weather protection, accessibility, proximity and the connecting bus services by developing models based on station types. The findings indicate substantial differences in the extent to which the daily and hourly models and the individual weather elements are able to explain the ridership variability and travel behavior of transit riders. By utilizing the time of day and station based models, the paper demonstrates the potential sources of weather impact on transit infrastructure, transit service and trip characteristics. The results suggest the development of specific policy measures which can help the transit agencies to mitigate the ridership differences due to adverse weather conditions.  相似文献   

14.
This study analyzes the potential benefits and drawbacks of taxi sharing using agent-based modeling. New York City (NYC) taxis are examined as a case study to evaluate the advantages and disadvantages of ride sharing using both traditional taxis (with shifts) and shared autonomous taxis. Compared to existing studies analyzing ride sharing using NYC taxi data, our contributions are that (1) we proposed a model that incorporates individual heterogeneous preferences; (2) we compared traditional taxis to autonomous taxis; and (3) we examined the spatial change of service coverage due to ride sharing. Our results show that switching from traditional taxis to shared autonomous taxis can potentially reduce the fleet size by 59% while maintaining the service level and without significant increase in wait time for the riders. The benefit of ride sharing is significant with increased occupancy rate (from 1.2 to 3), decreased total travel distance (up to 55%), and reduced carbon emissions (up to 866 metric tonnes per day). Dynamic ride sharing, wich allows shared trips to be formed among many groups of riders, up to the taxi capacity, increases system flexibility. Constraining the sharing to be only between two groups limits the sharing participation to be at the 50–75% level. However, the reduced fleet from ride sharing and autonomous driving may cause taxis to focus on areas of higher demands and lower the service levels in the suburban regions of the city.  相似文献   

15.
Taxis are increasingly becoming a prominent mobility mode in many major cities due to their accessibility and convenience. The growing number of taxi trips and the increasing contribution of taxis to traffic congestion are cause for concern when vacant taxis are not distributed optimally within the city and are unable to find unserved passengers effectively. A way of improving taxi operations is to deploy a taxi dispatch system that matches the vacant taxis and waiting passengers while considering the search friction dynamics. This paper presents a network-scale taxi dispatch model that takes into account the interrelated impact of normal traffic flows and taxi dynamics while optimizing for an effective dispatching system. The proposed model builds on the concept of the macroscopic fundamental diagram (MFD) to represent the dynamic evolution of traffic conditions. The model considers multiple taxi service firms operating in a heterogeneously congested city, where the city is assumed to be partitioned into multiple regions each represented with a well-defined MFD. A model predictive control approach is devised to control the taxi dispatch system. The results show that lack of the taxi dispatching system leads to severe accumulation of unserved taxi passengers and vacant taxis in different regions whereas the dispatch system improves the taxi service performance and reduces traffic congestion by regulating the network towards the undersaturated condition. The proposed framework demonstrates sound potential management schemes for emerging mobility solutions such as fleet of automated vehicles and demand-responsive transit services.  相似文献   

16.
This paper introduces the taxi route network design problem (TXRNDP) for a fixed‐route taxi service operating in Iran and, in similar form, in various other developing countries. The service operates fairly similar to regular transit services in that vehicles are only permitted to follow a certain predetermined route on the network. The service is provided with small size vehicles and main features are that vehicles only depart if full and that there are no intermediate boarding stops. In Iran the service attracts a high modal share but requires better coordination which is the main motivation for the present study. We develop a mathematical programming model to minimize the total travel time experienced by passengers while constraining the number of taxi lines, the trip transfer ratio and the length of taxi lines. A number of assumptions are introduced in order to allow finding an exact rather than heuristic solution. We further develop a linear programming solution to minimize the number of taxis required to serve the previously found fixed‐route taxi network. Results of a case study with the city of Zanjan, Iran, illustrate the resulting taxi flows and suggest the capability of the proposed model to reduce the total travel time, the total waiting time and the number of taxi lines compared to the current taxi operation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
This paper presents a new concept of urban shared‐taxi services. The proposed system has a new organisational design and pricing scheme that aims to use the capacity in traditional taxi services in a more efficient way. In this system, a taxi acting in ‘sharing’ mode offers lower prices to its clients, in exchange for them to accept sharing the vehicle with other persons who have compatible trips (time and space). The paper proposes and tests an agent‐based simulation model in which a set of rules for space and time matching between a request of a client and the candidate shared taxis is identified. It considers that the client is only willing to accept a maximum deviation from his or her direct route and establishes an objective function for selecting the best candidate taxi. The function considers the minimum travel time combination of pickup and drop‐off of all the pool of clients sharing each taxi while allowing to establish a policy of bonuses to competing taxis with certain number of occupants. An experiment for the city of Lisbon is presented with the objectives of testing the proposed simulation conceptual model and showing the potential of sharing taxis for improving mobility management in urban areas. Results show that the proposed system may lead to significant fare and travel time savings to passengers, while not jeopardising that much the taxi revenues. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Four transportation handicapped groups are identified in Taiwan (impaired ambulation, visually impaired, aged, and others) and nine accessible transportation alternatives are proposed. The costs and potential ridership for these nine alternatives in the Taipei area are estimated. Using analytic hierarchy process (AHP) and multicriteria evaluation with qualitative and quantitative data (MEQQD) methods, the most appropriate accessible transportation alternatives for each of the four handicap groups are selected. It is found that the best accessible transportation alternative for the impaired ambulation, the aged, and others would be a demand-responsive lift-equipped specialized van, while half-fare subsidized taxi would be the second-best option. By contrast, the best alternative for the visually impaired would be half-fare subsidized taxi, while conventional bus with broadcast equipment would be the second-best choice.  相似文献   

19.
Reducing roadside emissions is a common challenge in metropolitan cities. In Hong Kong, conventional liquefied petroleum gas taxis are one of the main contributors to roadside emissions as they operate on the streets 24 h a day with a long daily driving mileage. Moreover, these taxis suffer from a severely poor service reputation. To enhance the environmental friendliness and service quality of the taxi industry, this study explores the market potential of operating premium electric taxis in the dispatching mode. A stated preference survey was conducted to 1410 taxi customers about their taxi-riding choices between premium electric taxis and conventional liquefied petroleum gas taxis. In total, 5640 observations were obtained and used to develop a series of binary logistic regression models with different model formulations for the determination of the significant factors influencing customers’ selections. The findings indicate that walk time to and wait time for taxis were the most critical concerns to the customers, and they were more willing to take premium taxis if their journey distance was longer and their desired improvement on taxi service quality was greater. The socio-demographic status of taxi customers also influences their choices. The associated policy implications are discussed for promoting taxis with better service quality and fewer roadside emissions. The findings provide some policy insights to other international cities that have a similar taxi market to Hong Kong.  相似文献   

20.
Abstract

In this paper, we present a dynamic traffic assignment-simulation modeling framework (DYNASMART-P) to support the evaluation and planning of Bus Rapid Transit (BRT) services in urban transportation networks. The model represents the different characteristics associated with BRT operations such as: exclusive right-of-way lanes, limited-stop service, signal prioritization at congested intersections, and enhanced bus stops to reduce passenger boarding times. A set of simulation experiments is conducted using the model to study the impact of introducing a hypothetical BRT service in the Knoxville area in the State of Tennessee. In these experiments, the different operational characteristics of BRT are evaluated in terms of potential impact on transit ridership and on the interacting auto traffic. The results illustrate the advantages of BRT for increasing transit ridership and improving overall system performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号