首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Wang  Donggen  Lin  Tao 《Transportation》2019,46(1):51-74

The influence of the built environment on travel behavior has been the subject of considerable research attention in recent decades. Scholars have debated the role of residential self-selection in explaining the associations between the built environment and travel behavior. The purpose of this study is to make a contribution to the literature by adopting the cross-lagged panel modeling approach to analyze a panel data, which scholars have recommended as the ideal design for studying the influence of the built environment on travel behavior accounting for the residential self-selection. To that objective, we collected activity-travel diary data from a sample of 229 households in Beijing before and after they moved from one residential location to another. We developed a two-wave structural equation model linking the residential built environment to travel behavior and taking into consideration travel-related attitudes before and after residential change. The modeling results show that individuals’ travel attitudes may change after a home relocation. We found no evidence of residential self-selection, but significant influence of the built environment on travel preference. Nevertheless, the direct influence of travel preference on travel behavior seems to be stronger than that of the built environment. As one of the very few studies to use panel data, this research presents new insights into the relationship between the built environment and travel behavior and the role of residential self-selection.

  相似文献   

2.
ABSTRACT

Residential self-selection (RSS) is an important concern in the land use-travel research. Although many studies have addressed RSS during the past two decades, empirical results are inconsistent in terms of the existence, magnitude, and direction of self-selection bias. Moreover, recent studies substantiated other plausible associations within the theoretical framework of RSS, such as the endogeneity of travel attitudes. These further complicate the role of RSS in the land use-travel relationship. To improve understanding, this paper summarises recent progress in the RSS research, especially the studies published in the last decade. Specifically, we review three types of influences among the built environment, attitudes, and travel behaviour, and discuss unsolved problems within each type. We also discuss measurement issues of the built environment and attitudes in the RSS research. Because attitudes could be confounders, moderators, and mediators of the link between the built environment and travel behaviour, we recommend panel data with at least three waves of household travel surveys to address the complicated influences of attitudes. Future research needs to be more process-oriented to better understand the nature of RSS and its complex roles in the land use-travel research.  相似文献   

3.
Over the past decades research on travel mode choice has evolved from work that is informed by utility theory, examining the effects of objective determinants, to studies incorporating more subjective variables such as habits and attitudes. Recently, the way people perceive their travel has been analyzed with transportation-oriented scales of subjective well-being, and particularly the satisfaction with travel scale. However, studies analyzing the link between travel mode choice (i.e., decision utility) and travel satisfaction (i.e., experienced utility) are limited. In this paper we will focus on the relation between mode choice and travel satisfaction for leisure trips (with travel-related attitudes and the built environment as explanatory variables) of study participants in urban and suburban neighborhoods in the city of Ghent, Belgium. It is shown that the built environment and travel-related attitudes—both important explanatory variables of travel mode choice—and mode choice itself affect travel satisfaction. Public transit users perceive their travel most negatively, while active travel results in the highest levels of travel satisfaction. Surprisingly, suburban dwellers perceive their travel more positively than urban dwellers, for all travel modes.  相似文献   

4.
The role of residential self-selection has become a major subject in the debate over the relationships between the built environment and travel behavior. Numerous previous empirical studies on this subject have provided valuable insights into the associations between the built environment and travel behavior. However, the vast majority of the studies were conducted in North American and European cities; yet this research is still in its infancy in most developing countries, including China, where residential and transport choices are likely to be more constrained and travel-related attitudes quite different from those in the developed world. Using the data collected from 2038 residents currently living in TOD neighborhoods and non-TOD neighborhoods in Shanghai City, this paper aims to partly fill the gaps by investigating the causal relationship between the built environment and travel behavior in the Chinese context. More specifically, this paper employs Heckman’s sample selection model to examine the reduction impacts of TOD on personal vehicle kilometers traveled (VKT), controlling for self-selection. The results show that whilst the effects of residential self-selection are apparent; the built environment exhibits the most significant impacts on travel behavior, playing the dominant role. These findings produce a sound basis for local policymakers to better understand the nature and magnitude toward the impacts of the built environment on travel behavior. Providing the government department with reassurance that effective interventions and policies on land use aimed toward altering the built environment would actually lead to meaningful changes in travel behavior.  相似文献   

5.
Many studies have found that residents living in suburban neighborhoods drive more and walk less than their counterparts in traditional neighborhoods. This evidence supports the advocacy of smart growth strategies to alter individuals’ travel behavior. However, the observed differences in travel behavior may be more of a residential choice than a travel choice. Applying the seemingly unrelated regression approach to a sample from Northern California, we explored the relationship between the residential environment and nonwork travel frequencies by auto, transit, and walk/bicycle modes, controlling for residential self-selection. We found that residential preferences and travel attitudes (self-selection) significantly influenced tripmaking by all three modes, and also that neighborhood characteristics (the built environment and its perception) retained a separate influence on behavior after controlling for self-selection. Both preferences/attitudes and the built environment itself played a more prominent role in explaining the variation in non-motorized travel than for auto and transit travel. Taken together, our results suggest that if cities use land use policies to offer options to drive less and use transit and non-motorized modes more, many residents will tend to do so.  相似文献   

6.
Modeling the interaction between the built environment and travel behavior is of much interest to transportation planning professionals due to the desire to curb vehicular travel demand through modifications to built environment attributes. However, such models need to take into account self-selection effects in residential location choice, wherein households choose to reside in neighborhoods and built environments that are conducive to their lifestyle preferences and attitudes. This phenomenon, well-recognized in the literature, calls for the specification and estimation of joint models of multi-dimensional land use and travel choice processes. However, the estimation of such model systems that explicitly account for the presence of unobserved factors that jointly impact multiple choice dimensions is extremely complex and computationally intensive. This paper presents a joint GEV-based logit regression model of residential location choice, vehicle count by type choice, and vehicle usage (vehicle miles of travel) using a copula-based framework that facilitates the estimation of joint equations systems with error dependence structures within a simple and flexible closed-form analytic framework. The model system is estimated on a sample derived from the 2000 San Francisco Bay Area Household Travel Survey. Estimation results show that there is significant dependency among the choice dimensions and that self-selection effects cannot be ignored when modeling land use-travel behavior interactions.  相似文献   

7.
In the context of sustainable urban transport in developing countries, individuals’ travel behavior faces multiple factors which influence their mobility patterns. Recognizing these factors could be a favorable method to organize more regular and sustainable trip patterns. This study aims to identify the less well-known lifestyle along with more popular built environment as the main factors which shape travel behaviors. Employing data from 900 respondents of 22 urban areas in city of Shiraz, Iran, this paper explores travel behaviors as non-working trip frequencies by different modes. Results of structural equation model indicate a strong significant effect of individual’s lifestyle patterns on their non-working trips. However, built environment impact on travel behavior is small compared to lifestyle. Besides, other variables such as travel attitudes and socio-economic factors stay crucial in the mode choice selection. These findings indicate the necessity of regarding lifestyle orientations in travel studies as well as objective factors such as land use attributes.  相似文献   

8.
Understanding travel behavior and its relationship to urban form is vital for the sustainable planning strategies aimed at automobile dependency reduction. The objective of this study is twofold. First, this research provides additional insights to examine the effects of built environment factors measured at both home location and workplace on tour-based mode choice behavior. Second, a cross-classified multilevel probit model using Bayesian approach is employed to accommodate the spatial context in which individuals make travel decisions. Using Washington, D.C. as our study area, the home-based work (Home-work) tour in the AM peak hours is used as the analysis unit. The empirical data was gathered from the Washington-Baltimore Regional Household Travel Survey 2007–2008. For parameter estimation, Bayesian estimation method integrating Markov Chain Monte Carlo (MCMC) sampling is adopted. Our findings confirmed the important role that the built environment at both home location and work ends plays in affecting commuter mode choice behavior. Meanwhile, a comparison of different model results shows that the cross-classified multilevel probit model offers significant improvements over the traditional probit model. The results are expected to give a better understanding on the relationship between the built environment and commuter mode choice behavior.  相似文献   

9.
This paper presents an examination of the significance of residential sorting or self selection effects in understanding the impacts of the built environment on travel choices. Land use and transportation system attributes are often treated as exogenous variables in models of travel behavior. Such models ignore the potential self selection processes that may be at play wherein households and individuals choose to locate in areas or built environments that are consistent with their lifestyle and transportation preferences, attitudes, and values. In this paper, a simultaneous model of residential location choice and commute mode choice that accounts for both observed and unobserved taste variations that may contribute to residential self selection is estimated on a survey sample extracted from the 2000 San Francisco Bay Area household travel survey. Model results show that both observed and unobserved residential self selection effects do exist; however, even after accounting for these effects, it is found that built environment attributes can indeed significantly impact commute mode choice behavior. The paper concludes with a discussion of the implications of the model findings for policy planning.
Paul A. WaddellEmail:
  相似文献   

10.
Concerns over transportation energy consumption and emissions have prompted more studies into the impacts of built environment on driving-related behavior, especially on car ownership and travel mode choice. This study contributes to examine the impacts of the built environment on commuter’s driving behavior at both spatial zone and individual levels. The aim of this study is threefold. First, a multilevel integrated multinomial logit (MNL) and structural equation model (SEM) approach was employed to jointly explore the impacts of the built environment on car ownership and travel mode choice. Second, the spatial context in which individuals make the travel decisions was accommodated, and spatial heterogeneities of car ownership and travel mode choice across traffic analysis zones (TAZs) were recognized. Third, the indirect effects of the built environment on travel mode choice through the mediating variable car ownership were calculated, in other words, the intermediary nature of car ownership was considered. Using the Washington metropolitan area as the study case, the built environment measures were calculated for each TAZ, and the commuting trips were drawn from the household travel survey in this area. To estimate the model parameters, the robust maximum likelihood (MLR) method was used. Meanwhile, a comparison among different model structures was conducted. The model results suggest that application of the multilevel integrated MNL and SEM approach obtains significant improvements over other models. This study give transportation planners a better understanding on how the built environment influences car ownership and commuting mode choice, and consequently develop effective and targeted countermeasures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号