首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In order to effectively solve modern automotive design problems including the results of nonlinear FEA and multi-body dynamics, a progressive meta-model based design optimization is presented. To reduce the number of initial sample points, two sampling methods are introduced. Then, for efficient and stable construction of meta-models, three metamodel methods are newly introduced which are numerically based on the singular value decomposition technique. To design a practical system considering manufacturing tolerances and optimizing multiple performances, a robust design optimization, 6-sigma constraints and multi-objective strategies are implemented when solving the approximate optimization problem constructed from the meta-models. Until the convergence criteria are satisfied, the initially developed meta-models are progressively improved by adding only one point that minimizes the approximate Lagrangian in the consecutive optimization iterations. Finally, one validation sample and four automotive applications are solved to show the effectiveness of the proposed approach.  相似文献   

2.
目前广泛应用的基于元模型的优化方法通常起始于单一一组样本点,一旦样本点质量较差、其搜索效率和精度都会受到影响,甚至得不到想要的结果。提出一种多重元模型搜索方法,此方法应用两组初始样本点,拟合多个元模型。在搜索过程中,首先应用部分昂贵点构造一个重点空间,并构建二阶多项式进行搜索。为避免陷入局部最优的陷阱,同时应用构建的克里金模型搜索整个设计空间。经过多个算例的测试,此方法具有很高的搜索精度、搜索效率和稳健性。将此方法应用于某款车的轻量化设计中,经过优化,此结构减少了8.0 kg的质量,并提升了其刚度性能求。  相似文献   

3.
This study presents the robust design optimization process of suspension system for improving vehicle dynamic performance (ride comfort, handling stability). The proposed design method is so called target cascading method where the design target of the system is cascaded from a vehicle level to a suspension system level. To formalize the proposed method in the view of design process, the design problem structure of suspension system is defined as a (hierarchical) multilevel design optimization, and the design problem for each level is solved using the robust design optimization technique based on a meta-model. Then, In order to verify the proposed design concept, it designed suspension system. For the vehicle level, 44 random variables with 3% of coefficient of variance (COV) were selected and the proposed design process solved the problem by using only 88 exact analyses that included 49 analyses for the initial meta-model and 39 analyses for SAO. For the suspension level, 54 random variables with 10% of COV were selected and the optimal designs solved the problem by using only 168 exact analyses for the front suspension system. Furthermore, 73 random variables with 10% of COV were selected and optimal designs solved the problem by using only 252 exact analyses for the rear suspension system. In order to compare the vehicle dynamic performance between the optimal design model and the initial design model, the ride comfort and the handling stability was analyzed and found to be improved by 16% and by 37%, respectively. This result proves that the suggested design method of suspension system is effective and systematic.  相似文献   

4.
This paper proposes a robust control framework for lane-keeping and obstacle avoidance of semiautonomous ground vehicles. It presents a systematic way of enforcing robustness during the MPC design stage. A robust nonlinear model predictive controller (RNMPC) is used to help the driver navigating the vehicle in order to avoid obstacles and track the road centre line. A force-input nonlinear bicycle vehicle model is developed and used in the RNMPC control design. A robust invariant set is used in the RNMPC design to guarantee that state and input constraints are satisfied in the presence of disturbances and model error. Simulations and experiments on a vehicle show the effectiveness of the proposed framework.  相似文献   

5.
In this part of the paper, three dimensional computational capabilities, that includes significant details, are developed for the nonlinear dynamic analysis of large scale spatial tracked vehicles. Three dimensional nonlinear contact force models that describe the interaction between the track links and the vehicle components such as the rollers, sprockets, and idlers as well as the interaction between the track links and the ground are developed and used to define the generalized contact forces associated with the vehicle generalized coordinates. Tangential friction and contact forces are developed in order to maintain the stability of the track motion and avoid the slippage of the track or its rotation as a rigid body. Body and surface coordinate systems are introduced in order to define the spatial contact conditions. The nonlinear equations of motion of the tracked vehicle are solved using the velocity transformation procedure developed in the first part of this paper. This procedure is used in order to obtain a minimum set of differential equations, and avoid the use of the iterative Newton-Raphson algorithm. A computer simulation of a tracked vehicle that consists of one hundred and six bodies and has one hundred and sixteen degrees of freedom is presented in order to demonstrate the use of the formulations presented in this study.  相似文献   

6.
This paper presents robust design optimization method to reduce steering pull phenomenon. One of the biggest causes of steering pull phenomenon is tolerance of suspension system such as hard point, spring, damper and bush. Therefore, the relationship between suspension systems and steering pull phenomenon has as nonlinear characteristics. But, it can be very difficult to evaluate the analytical design sensitivity. Thus, it is impossible to directly apply a well-developed optimization algorithm based on gradient information. To avoid these difficulty, this study uses sequential approximation optimization process based on a meta-model. The robust design process has 28 random design variables with tolerance. For efficient design process, the sample variances for the design goals are approximated from meta-models. The proposed approach required only 62 evaluations until it converged. Optimal design reduced the drift by 80% and its deviation by 38.7%, respectively. This result proves that the suggested design method of suspension system is effective and useful.  相似文献   

7.
孙超  寇越  田林 《交通科技》2020,(2):106-109
为探究城市道路行车轨迹与路侧之间的横向距离对车辆运行的影响,提高驾驶员行车安全,在某市滨海路进行汽车运行轨迹样本采集试验,使用AxleLight RLU11系列路侧交通数据采集系统分车道采集试验路段汽车运行轨迹样本,利用SPSS Statistics对试验路段不同车道车辆运行轨迹样本进行数据处理,绘制不同行车道运行车辆横向距离的累积频率曲线,计算得到汽车运行轨迹与路侧的横向距离D85,通过绘制行驶车辆距路侧的横向距离直方图,得到不同车道的车辆分布规律。结果显示,驾驶员大多数偏向选择在内侧车道运行。根据试验路段内外2条车道车辆横向距离和运行轨迹特性,可为城市道路交通安全设施的设置提供理论依据,以期提高城市道路交通运行安全。  相似文献   

8.
为提升整车路噪性能,本文中基于虚拟试车场技术和代理模型优化方法对轮胎参数进行了优化.通过集成试验场扫描所得路谱、CDTire轮胎模型和整车声固耦合模型,建立了整车路噪仿真环境.采用最优拉丁超立方采样、Kriging模型和多岛遗传算法构造了优化模型.以轮胎关键物理参数为设计变量,驾驶员外耳声压级均方根为优化目标,测点三向...  相似文献   

9.
为提高驱动桥壳的轻量化水平和道路行驶疲劳可靠性,对驱动桥壳进行6-Sigma稳健性多目标轻量化设计。首先,建立驱动桥壳的虚拟台架仿真模型,并进行垂直弯曲刚性和垂直弯曲静强度的仿真分析,将仿真得到的桥壳本体各测点变形量和关键受力点应力值与试验结果进行对比,以验证桥壳虚拟台架仿真模型的可信性。其次,建立驱动桥壳的最大垂向力仿真模型,结合耐久性强化路面下驱动桥壳板簧座处的垂向载荷谱,基于名义应力法,对驱动桥壳进行了道路行驶工况下的疲劳寿命分析。然后,选取驱动桥壳本体各截面壁厚为设计变量,基于熵权法和TOPSIS(Technique for Ordering Preferences by Similarity to Ideal Solution,TOPSIS)方法研究各壁厚变量对桥壳综合性能的影响。结合RBF(Radial Basis Function,RBF)近似模型和NSGA-Ⅱ算法(Elitist Non-dominated Sorting Genetic Algorithm,NSGA-Ⅱ)对驱动桥壳进行基于疲劳寿命的多目标确定性轻量化设计,获取Pareto最优解集,选取桥壳的优化方案。最后,基于蒙特卡罗模拟抽样方法和微存档遗传算法(AMGA)对驱动桥壳进行了多目标6-Sigma稳健性轻量化设计,得到桥壳稳健性优化方案。研究结果表明:稳健性优化后,驱动桥壳本体的疲劳寿命降低了12.3%,但和初始结构的疲劳寿命相比,仍提升了117%;桥壳本体疲劳寿命正态分布的标准方差下降了72.1%,说明桥壳本体的疲劳可靠性得到了大幅提升;桥壳本体的质量升高了1.8%,但和优化前的桥壳原结构相比,仍实现减重5.9%。  相似文献   

10.
In the design and development of high-speed tracked vehicles, it is necessary to have an understanding of the interrelationship between the terrain factors and the vehicle characteristics during steering. The handling behavior of skid-steered tracked vehicles is more complex than that of wheeled vehicles because of non-linear characteristics arising from the sliding interface between the track and the ground. In the present work, a five degree-of-freedom (DOF) steering model of a tracked vehicle is developed, and the handling behavior during non-stationary motion is studied when operating at high and low speeds. It is demonstrated that the inclusion of roll and pitch DOF changes the steering response when compared to the response from three DOF models proposed earlier by several researchers. This is due to the strong coupling between the pitch and yaw motions. The effect of the initial forward velocities on the trajectory of the vehicle during non-stationary motion is also studied. It is observed from the results that the stability is influenced by the type of steering input, steering ratio and vehicle forward speed.  相似文献   

11.
为尽量降低响应型接驳公交系统的运行费用,提出多换乘点间运行线路协调设计的构想。针对同时包含预约需求和实时需求的混合需求,构建多换乘点响应型接驳公交系统运行线路的2阶段协调优化方法,并设计优化流程。第1阶段仅考虑预约需求,首先将预约乘客按有/无特定换乘点要求进行分类,在此基础上构建预约需求下多换乘点多车辆运行线路的协调优化模型。在协调优化模型中,优化目标是由乘客时间费用、车辆运行费用、以及惩罚费用所构成的系统总成本最小;乘客时间费用包括乘客候车时间的惩罚费用、车内乘客在需求点的等待时间费用以及乘客车上时间的惩罚费用3个部分;车辆运行费用包括车辆启动费用、路段行驶费用、需求点的停靠费用、车辆早到引起的等待费用4个部分;考虑的约束条件包括乘客候车和车上的软时间窗、乘客换乘点要求、车辆容量、车辆出行时长等。第2阶段根据规则判断是否响应实时需求,并根据响应情况重新优化后续各班次的运行线路。针对第1阶段模型,基于模拟退火算法设计求解算法。研究表明:在预约需求或混合需求条件下,与各换乘点运行线路独自优化相比,协调优化方法均能显著降低运送全部响应乘客所需的平均运行距离和平均总成本;仅有预约需求时分别降低5.4%、19.8%,新增实时需求后分别减少1.4%、21.7%;与固定发车间隔相比,分时段调整发车间隔,也能有效降低运送全部响应乘客所需的平均运行距离和平均总成本,仅有预约需求时分别降低18.2%、17.2%,新增实时需求后分别减少19.97%、25.06%,说明多换乘点间车辆路径的协调运行是提升响应型接驳公交运行效率的有效途径。  相似文献   

12.
This paper describes an optimal vehicle speed controller that uses torque-based control concepts. The controller design was divided into two steps: first, for a given vehicle speed trajectory, the engine torque demand was determined; in the second stage, a torque controller was implemented to track this torque demand. The torque demand was determined by a primary component and a correction component. The primary component was determined by solving an off-line optimization problem, and the correction component was added to compensate for the error caused by the off-line optimization. A modelbased proportional-integral (PI) feedback torque controller was employed to realize the engine torque tracking. Simulation results generated by a benchmark simulator were given to demonstrate performance of the optimal vehicle speed controller and a conventional PI speed controller that was included for comparison.  相似文献   

13.
为了实时估计路段车辆排队长度,利用铺设在路段上的检测器,提出了一种车辆排队估计方法,对车辆排队进行实时跟踪。该方法考虑了一般的道路拓扑结构,路段排队的演化过程分为四个阶段:初始排队阶段、排队蔓延阶段、排队上溯阶段和堵塞路段阶段,不同阶段的排队利用不同的信息,通过不同的模型进行推算,通过实地调查验证,可以高效实时追踪路段排队的演化。  相似文献   

14.
为了提升高速公路突发事件应急救援效率,将交通状况、在途潜在风险等信息纳入高速公路突发事件救援车辆诱导研究中,基于实时和时变路网环境下的交通信息,以车辆出行时间最小,路径可靠性最强为目标,构建基于在途时间和路径可靠性的车辆诱导最优化模型。设计一种实时信息和时变信息结合策略,使模型规划路径随路网交通量变化而相应做出阶段性调整,采用滚动时域策略将该动态决策问题转化为一系列离散时间点的静态决策问题,用于计算应急救援路径时间;在此基础上,考虑到高速公路突发事件发生后路网交通事故率升高,同时容易发生拥堵的状况,进一步将救援规划路径可靠性作为决策目标,即应急救援车辆规划路径在面对道路中断或者严重拥堵时是否拥有更多的调整策略,更新救援路径尽快完成救援任务;为了便于量化计算将上述目标转化为统一的价值成本,共同决定救援车辆的行驶路径。研究结果表明:当行驶路段交叉口间距离较长,中间无其他道路连通,行驶过程中由于突发事件破坏趋势蔓延导致道路中断或拥堵等意外发生时,无法更新调整救援路径,最终导致救援延误;因此,基于救援时间和路径可靠性的车辆诱导最优化模型能够克服以上问题,进一步提高救援效率。  相似文献   

15.
A design methodology for mechatronic vehicles is presented. With multidisciplinary optimization (MDO) methods, strongly coupled mechanical, control and other subsystems are integrated as a synergistic vehicle system. With genetic algorithms (GAs) at the system level, the mechanical, control and other relevant parameters can be optimized simultaneously. To demonstrate the feasibility and efficacy of the proposed design methodology for mechatronic vehicles, it is used to resolve the conflicting requirements for ride comfort, suspension working spaces and unsprung mass dynamic loads in the optimization of half-vehicle models with active suspensions. Both deterministic and random road excitations, both rigid and flexible vehicle bodies and both perfect measurement of full state variables and estimated limited state variables are considered. Numerical results show that the optimized vehicle systems based on the methodology have better overall performance than those using the linear quadratic Gaussian (LQG) controller. It is shown that the methodology is suitable for complex design optimization problems where: (1) there is interaction between different disciplines or subsystems; (2) there are multiple design criteria; (3) there are multiple local optima; (4) there is no need for sensitivity analysis for the optimizer at the system level; and (5) there are multiple design variables.  相似文献   

16.
This paper presents the development of a modal control strategy for the active steering of solid axle railway vehicles and reveals benefits of actively stabilising the wheelsets of a railway vehicle. A modal decomposition is applied to a 2-axle railway vehicle to de-couple its body lateral and yaw motions and hence to allow more detailed analysis of the vehicle behaviour and more robust design of active controllers. Independent controllers for the two motions are developed based on the two de-coupled modes. Parameter variations such as creep coefficients and wheelset conicity are taken into account in the design process to guarantee a robust design. The study shows that, compared to a passive vehicle, the vehicles with actively steered wheelsets not only perform much better on a curved track, but also improve the ride quality on straight track. Computer simulations are used in the study to verify the development of the controllers and assess the system performance with the control scheme proposed.  相似文献   

17.
A new model for simulating rail roughness growth on tangent track is presented in this paper. The model consists of three relatively independent components: (1) a time-domain vehicle/track interaction model; (2) a 2D non-Hertzian and non-steady wheel/rail contact model; and (3) a wear model. Wheel/rail contact forces for a given initial roughness obtained from the vehicle/track interaction model are used by the contact model to calculate the contact patch size, normal pressure and tangential stresses with material removal assumed to be linearly proportional to the friction work in the contact patch. The roughness profile is updated and fed back into vehicle/track interaction model. The 2D contact model is initially compared with a 3D model for various wavelength of initial sinusoidal roughness. Long term roughness growth is then simulated with the 2D contact model. Simulation shows that all initial sinusoidal roughness of wavelengths between 20-100 mm are levelled out. The wavelength-fixing mechanism, that has previously been used to explain the cause of corrugation, is not found in the present investigations.  相似文献   

18.
19.
A design methodology for mechatronic vehicles is presented. With multidisciplinary optimization (MDO) methods, strongly coupled mechanical, control and other subsystems are integrated as a synergistic vehicle system. With genetic algorithms (GAs) at the system level, the mechanical, control and other relevant parameters can be optimized simultaneously. To demonstrate the feasibility and efficacy of the proposed design methodology for mechatronic vehicles, it is used to resolve the conflicting requirements for ride comfort, suspension working spaces and unsprung mass dynamic loads in the optimization of half-vehicle models with active suspensions. Both deterministic and random road excitations, both rigid and flexible vehicle bodies and both perfect measurement of full state variables and estimated limited state variables are considered. Numerical results show that the optimized vehicle systems based on the methodology have better overall performance than those using the linear quadratic Gaussian (LQG) controller. It is shown that the methodology is suitable for complex design optimization problems where: (1) there is interaction between different disciplines or subsystems; (2) there are multiple design criteria; (3) there are multiple local optima; (4) there is no need for sensitivity analysis for the optimizer at the system level; and (5) there are multiple design variables.  相似文献   

20.
This paper presents the development of a modal control strategy for the active steering of solid axle railway vehicles and reveals benefits of actively stabilising the wheelsets of a railway vehicle. A modal decomposition is applied to a 2-axle railway vehicle to de-couple its body lateral and yaw motions and hence to allow more detailed analysis of the vehicle behaviour and more robust design of active controllers. Independent controllers for the two motions are developed based on the two de-coupled modes. Parameter variations such as creep coefficients and wheelset conicity are taken into account in the design process to guarantee a robust design. The study shows that, compared to a passive vehicle, the vehicles with actively steered wheelsets not only perform much better on a curved track, but also improve the ride quality on straight track. Computer simulations are used in the study to verify the development of the controllers and assess the system performance with the control scheme proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号