首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Particulate matter in diesel engine exhaust, particularly nano-particles, can cause serious human health problems including diseases such as lung cancer. Because diesel nano-particle issues are of global concern, regulations on particulate matter emissions specify that not only the weight of particulate matter emitted but also the concentration of nanoparticles must be controlled. This study aimed to determine the effects on nano-particle and PM emissions from a diesel engine when applying a urea-SCR system for NOx reduction. We found that PM weight increases by approximately 90% when urea is injected in ND-13 mode over the emission without urea injection. Additionally, PM weight increases as the NH3/NOx mole ratio is increased at 250 °C. In SEM scans of the collected PM, spherical particles were observed during urea injection, with sizes of approximately 200 nm to 1 μm. This study was designed to determine the conditions under which nano-particles and PM are formed in a urea-SCR system and to relate these conditions to particle size and shape via a quantitative analysis in ND-13 mode.  相似文献   

2.
This paper presents preliminary control system simulation results in a urea-selective catalytic reduction (SCR) aftertreatment system based on NH3 sensor feedback. A four-state control-oriented lumped parameter model is used to analyze the controllability and observability properties of the urea-SCR plant. A model-based estimator is designed via simulation and a control system is developed with design based on a sliding mode control framework. The control system based on NH3 sensor feedback is analyzed via simulation by comparing it to a control system developed based on NOx sensor feedback. Simulation results show that the NH3 sensor-based strategy performs very similarly in comparison to a NOx sensor-based strategy. The control system performance metrics for NOx index, urea index, urea usage, and NH3 slip suggest that the NOx sensor can be a potential alternative to a NOx sensor for urea-SCR control applications.  相似文献   

3.
This paper presents an observer design for SCR mid-catalyst ammonia concentration estimation using tailpipe NOx and ammonia sensors. Urea-SCR has been popularly used by Diesel engine powered vehicles to reduce NOx emissions in recent years. It utilizes ammonia, converted from urea injected at upstream of the catalyst, as the reductant to catalytically convert NOx emissions to nitrogen. To simultaneously achieve high SCR NOx conversion efficiency and low tailpipe ammonia slip, it is desirable to control the ammonia storage distribution along the SCR catalyst. Such a control method, however, requires a mid-catalyst ammonia sensor. The observer developed in this paper can replace such a mid-catalyst ammonia sensor and be used for SCR catalyst ammonia distribution control as well as serves for fault diagnosis purpose of the mid-catalyst ammonia sensor. The stability of the observer was shown based on the sliding mode approach and analyzed by simulations. Experimental validation of the observer was also conducted based on a medium-duty Diesel engine two-catalyst SCR system setup with emission sensors.  相似文献   

4.
Urea-SCR systems have been widely used in diesel vehicles according to the strengthened NOx (Nitrogen Oxides) emission standard. The NOx removal efficiencies of the latest well optimized urea-SCR system are above 90 % at moderate exhaust gas temperature of 250 ~ 450 °C. However, a large amount of NOx is emitted from diesel vehicles at cold start or urban driving conditions, when the exhaust gas temperature is not high enough for SCR catalyst activation. Although many researchs have been stuied to improve NOx conversion efficiency at these low temperature conditions, it is still one of important technical issues. In this study, the effect of UWS injection at low exhaust gas temperature conditions is studied. This study uses a 3.4 L diesel engine equipped with a commertial urea SCR system. As a result, it is found that about 5 % of NOx removal efficiency is improved in the NRTC test when UWS injection starts at the SCR inlet temperature of 150 °C compared to 200 °C. It is also found that urea deposits can be formed on the wall of exhaust pipe, when the local wall temperature is lower than temperature of urea decomposition.  相似文献   

5.
《JSAE Review》2002,23(1):9-14
Characteristics of NOx formation in a gas turbine fuelled with hydrogen were analyzed with both an experimental and a numerical approach. This research experimentally investigated NOx reduction effect of rich–lean combustion in a coaxial burner. Hydrogen emits no Prompt NO even in rich mixture conditions, and can be more effective to reduce NOx in the rich–lean combustion system than hydrocarbons. The results show that the rich–lean combustion of hydrogen successfully reduces NOx emission compared with diffusive combustion. In the rich–lean combustion, hydrogen combustion has lower NOx emission compared to methane combustion, especially with larger equivalence ratio of richer side mixture. Calculations of NOx formation in the rich–lean combustion were also done employing the extended Zel’dovich NO formation mechanism.  相似文献   

6.
《JSAE Review》1998,19(1):21-26
The effect of injection nozzle, diesel fuel density (volatility) and cetane number on diesel exhaust emissions were investigated. Decreasing injection nozzle hole diameter decreases PM emission. However, a small nozzle hole increases NOx emission and decreases the effect of fuel on PM emission. Decreasing fuel density is effective for reduction of NOx emission. But the effect is smaller than that of nozzle hole diameter and injection pressure. Furthermore injection timing retardation decreases the effect of fuel density on NOx emission.  相似文献   

7.
Extensive usage of automobiles has certain disadvantages and one of them is its negative effect on environment. Carbon dioxide (CO2), carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx), sulphur dioxide (SO2) and particulate matter (PM) come out as harmful products during incomplete combustion from internal combustion (IC) engines. As these substances affect human health, regulatory bodies impose increasingly stringent restrictions on the level of emissions coming out from IC engines. This trend suggests the urgent need for the investigation of all aspects relevant to emissions. It is required to modify existing engine technologies and to develop a better after-treatment system to achieve the upcoming emission norms. Diesel engines are generally preferred over gasoline engines due to their undisputed benefit of fuel economy and higher torque output. However, diesel engines produce higher emissions, particularly NOx and PM. Aftertreatment systems are costly and occupy more space, hence, in-cylinder solutions are preferred in reducing emissions. Exhaust gas recirculation (EGR) technology has been utilized previously to reduce NOx. Though it is quite successful for small engines, problem persists with large bore engines and with high rate of EGR. EGR helps in reducing NOx, but increases particulate emissions and fuel consumption. Many in-cylinder solutions such as lower compression ratios, modified injection characteristics, improved air intake system etc. are required along with EGR to accomplish the future emission norms. Modern combustion techniques such as low temperature combustion (LTC), homogeneous charge compression ignition (HCCI), premixed charge compression ignition (PCCI) etc. would be helpful for reducing the exhaust emissions and improving the engine performance. However, controlling of autoignition timing and achieving wider operating range are the major challenges with these techniques. A comprehensive review of diesel engine performance and emission characteristics is given in this paper.  相似文献   

8.
《JSAE Review》1995,16(1):21-25
The platinum ion-exchanged ZSM-5 zeolite catalyst (Pt-5), which reduces nitrogen oxides (NOx) in the presence of oxygen and hydrocarbons, was applied to actual diesel engine exhaust. Compared to the Cooper ion-exchanged ZSM-5 zeolite catalyst, the Pt-Z had higher NOx reduction efficiency, ηNOx = 33%, and lower activation temperature, 250°C, in normal engine operation. It was found that water in the exhaust gas did not apparently affect the NOx reduction, while the reduction efficiency was significantly affected by the aspect ratio of the catalyst reactor and by the shape of the catalyst, i.e. pellet or honeycomb.  相似文献   

9.
In this research, the effects of three operating parameters (Diesel injection timing, propane ratio, and exhaust gas recirculation (EGR) rates) in a diesel-propane dual fuel combustion were investigated. The characteristics of dual-fuel combustion were analyzed by engine parameters, such as emission levels (Nitrogen oxides (NOx) and particulate matter (PM)), gross indicated thermal efficiency (GIE) and gross IMEP Coefficient of Variance (CoV). Based on the results, improving operating strategies of the four main operating points were conducted for dual-fuel PCCI combustion with restrictions on the emissions and the maximum pressure rise rate. The NOx emission was restricted to below 0.21 g/kWh in terms of the indicated specific NOx (ISNOx), PM was restricted to under 0.2 FSN, and the maximum pressure rise rate (MPRR) was restricted to 10 bar/deg. Dual-fuel PCI combustion can be available with low NOx, PM emission and the maximum pressure rise rate in relatively low load condition. However, exceeding of PM and MPRR regulation was occurred in high load condition, therefore, design of optimal piston shape for early diesel injection and modification of hardware optimizing for dual-fuel combustion should be taken into consideration.  相似文献   

10.
《JSAE Review》1995,16(1):35-42
The objective of this study is to develop a simplified emission test for the inspection of in-use vehicles. For this purpose, a simplified chassis dynamometer (S-CHDY) was developed first. S-CHDY consists of a speed meter tester and a direct current motor system which can load electrical inertia force to the test vehicle. To examine the effectiveness of the emission test, the emission control systems of four vehicles were tampered with, and they were driven on S-CHDY with M4 mode pattern. CO, HC and NOx concentrations in tail pipe gas were continuously measured and those mean values were evaluated. As a result, it was shown that the mean values rise according to the abnormality in the emission control system. Moreover, to directly measure the mass emissions from the test vehicles, a new type CVS method was developed.  相似文献   

11.
To comply with reinforced emission regulations for harmful exhaust gases, including carbon dioxide (CO2) emitted as a greenhouse gas, improved technologies for reducing CO2 and fuel consumption are being developed. Stable lean combustion, which has the advantage of improved fuel economy and reduced emission levels, can be achieved using a sprayguided-type direct-injection (DI) combustion system. The system comprises a centrally mounted injector and closely positioned spark plugs, which ensure the combustion reliability of a stratified mixture under ultra-lean conditions. The aim of this study is to investigate the combustion and emission characteristics of a lean-burn gasoline DI engine. At an excess air ratio of 4.0, approximately 23% improvement in fuel economy was achieved through optimal event timing, which was delayed for injection and advanced for ignition, compared to that under stoichiometric conditions, while NOx and HC emissions increased. The combustion characteristics of a stratified mixture in a spray-guided-type DI system were similar to those in DI diesel engines, resulting in smoke generation and difficulty in three-way catalystutilization. Although a different operating strategy might decrease fuel consumption, it will not be helpful in reducing NOx and smoke emissions; therefore, alternatives should be pursued to achieve compliance with emission regulations.  相似文献   

12.
Fuel injection during negative valve overlap period was used to realize diesel homogeneous charge compression ignition (HCCI) combustion. In order to control the combustion, CO2 in-cylinder injection was used to simulate external EGR. Effects of CO2 injection parameters (injection timing, quantity, pressure) on HCCI combustion and emission characteristics were investigated. Experimental results revealed that CO2 in-cylinder injection can control the start of combustion and effectively reduce NOx emission. Either advancing CO2 injection timing or increasing CO2 injection quantity can reduce peak cylinder pressure and mean gas temperature, delay the starts of low temperature reaction (LTR) and high temperature reaction (HTR), and lower pressure rise rate; NOx emission was reduced, while smoke, HC, and CO emissions increased. Since the combustion phase was improved, the indicated thermal efficiency was also improved. Injection pressure determines the amount of disturbance introduced into the cylinder. Generally, with the same injection quantity, higher injection pressure results in higher momentum flux and total momentum. Larger momentum flux and momentum has a stronger disturbance to air-fuel mixture, resulting in a more homogeneous mixture; therefore, larger injection pressure leads to lower NOx and smoke emissions.  相似文献   

13.
This paper proposes a real-time empirical model of NOx emissions for diesel engines. The proposed model predicts the level of NOx emissions using an empirical model developed based on the thermal NO formation mechanism, the extended Zeldovich mechanism. Since it is difficult to consider the exact physical NO formation phenomena in real-time applications, the proposed algorithm adapts the key factors of the NO formation mechanism from the extended Zeldovich mechanism: temperature of the burned gas, concentration of the gas species, and combustion duration where NO is generated. These factors are considered in a prediction model as four parameters: exhaust gas recirculation rate (EGR rate), crank angle location of 50 % of mass fraction burned (MFB50), exhaust lambda value, and combustion acceleration. The proposed prediction model is validated with various steady engine experiments that showed a high linear correlation with the NOx emission measured by a NOx sensor. Furthermore, it is also validated for transient experiments.  相似文献   

14.
Since the 1990s, transport project assessments take systematically pollutant emission estimations into account. This paper is about the methodological aspects of these calculations. It focuses more specifically on the car fleet hypothesis, which most often lays on national data, without consideration of local specificities. We use the last household travel survey from Lyon, 2006, and the SIMBAD model to compare the results of CO2 and NOx emissions estimated from the French national car fleet, the aggregated Lyon car fleet and the same fleet disaggregated by household location and income. We show that the error level varies, depending on the pollutant and the observation scale. The use of an aggregated local car fleet seems interesting and satisfactory for a global emission assessment. If the results are required at a more detailed spatial level, the use of this local fleet improves sharply the estimations in comparison of a national fleet; the fleet disaggregation refines the results for NOx.  相似文献   

15.
柴油机NOx催化器还原剂添加方案优选   总被引:2,自引:0,他引:2  
运用计算机辅助分析手段(CAD/CFD)对柴油机NOx催化器还原剂与排气的混合过程进行了模拟,通过考察不同还原剂添加方案下催化器内还原剂的浓度分布,研究了添加位置、喷油器型式及喷射方向等因素对还原剂浓度分布的影响,研究结果为还原剂添加系统的方案优选提供了依据。  相似文献   

16.
The HCCI (Homogeneous Charge Compression Ignition) engine is an internal combustion engine under development, which is capable of providing both high diesel-like efficiency and very low NOx and particulate emissions. However, several technical issues must be resolved before the HCCI engine is ready for widespread application. One issue is that its operating range is limited by an excessive pressure rise rate which is caused by the excessive heat release from its selfaccelerated combustion reaction and the resulting engine knock in high-load conditions. The purpose of this study was to evaluate the potential of thermal and fuel stratification for reducing the pressure rise rate in HCCI engines. The NOx and CO concentrations in the exhaust gas were also evaluated to confirm combustion completeness and NOx emissions. The computational work was conducted using a multi-zone code with detailed chemical kinetics, including the effects of thermal and fuel stratification on the onset of ignition and the rate of combustion. The engine was fueled with dimethyl ether (DME) which has a unique two-stage heat release, and methane which has a one-stage heat release.  相似文献   

17.
某国IV柴油机催化器流场分析   总被引:1,自引:0,他引:1  
为分析某国IV柴油机后处理装置内部流场的气流分布,文章通过CFD软件AVL-FIRE对该柴油机的催化器进行了CFD仿真分析,计算得到了催化器载体DOC和POC前端的速度均匀性系数,该结果符合评价标准。结果表明,裁体前端的速度均匀性系数均处在一个较高的水平,能够满足气流分布均匀性要求。  相似文献   

18.
《JSAE Review》2001,22(1):49-55
The NOx sensor based on mixed potential was made by laminating YSZ green sheets, on which electrodes including an NOx sensing electrode, an NOx conversion electrode, a Pt heater and thermocouple were printed and sintered. The output signal of this sensor was fairly independent of gas temperatures and the velocity of gas flows in the test gases. The engine test for the exhaust gases at around λ=1 showed that the sensor outputs changed corresponding to NOx concentrations from the gas analyzer. It is expected that this sensor based on mixed potential can be utilized for automobiles.  相似文献   

19.
《JSAE Review》1999,20(2):183-190
Nitrous oxide (NOx) and the particulate matter contained in the exhaust given off by diesel powered vehicles have been identified as elements responsible for polluting the atmosphere. As such, these emissions have been the targets of increasingly strict emission control regulations. Plans are underway to introduce regulations that are even stricter some time early in the next century. The advanced thermal efficiency offered by diesel engines is a feature clearly desired for its potential contribution toward energy conservation and the reduction of global warming. Research and development on the highly thermal-efficient direct-injection diesel engine are progressing at a rapid pace in Europe where introduction of a carbon dioxide tax is under consideration.  相似文献   

20.
《JSAE Review》1998,19(4):319-327
This study aimed to reduce NOx and soot by creating a more homogeneous lean fuel distribution in a diesel spray using high-pressure fuel injection and a micro-hole nozzle. This injection system shortened the ignition delay, but a homogeneous lean fuel distribution in the diesel spray was not achieved. Using a lower cetane number fuel, the resulting longer ignition delay made a uniform, lean fuel distribution in the diesel spray possible with this injection system. Ignition and combustion were analyzed by the combustion chamber pressure history, and flame temperatures and KL values were analyzed by the two-color method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号