首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
锂离子电池温升特性分析及液冷结构设计   总被引:1,自引:0,他引:1  
针对电动汽车动力电池的温升发热导致温度分布不均及过热现象,根据电池的热物性参数及不同环境温度下的内阻,建立电池包生热分析模型;测试采集并拟合电动汽车的母线电流,通过仿真分析得到不同车速下电动汽车电池包的温升情况;进行典型城市工况实车试验,测取不同车速下电池包内温度测点的温升数据并拟合成温升曲线,通过仿真与试验结果对比,验证所建立的热分析模型的准确性;在此基础上,设计双进双出的液冷散热管道结构方案,分析在1C放电倍率下该液冷散热方案的散热效果. 研究结果表明:锂电池在高温(50 ℃)下,内阻仅为13.9 mΩ,而在低温(?30 ℃)时,内阻却达到了21.5 mΩ;电动汽车在新欧洲行驶工况(NEDC工况)和匀速工况(40、50、60、70 km/h)下的最高温升分别为1.8、2.6、3.6、5.3、8.0 ℃;所设计的U型结构液冷管道可以有效地降低电池包温升,提高电池包的温度均匀度.   相似文献   

2.
针对锂电池组散热问题,提出了一种将分岔液冷通道与复合相变材料相结合的复合液冷系统,并对其散热性能进行了数值研究。首先,通过单体电池充放电实验,得到电池的产热量;其次,建立三维电池组模型,以冷却通道各级数量和复合相变材料的厚度为设计变量,采用最优拉丁方方法构建44个试验样本点;然后,基于响应面法建立近似模型,并采用了多目标粒子群算法,进行优化设计;最后,讨论冷却液质量流量的影响。结果表明:当分岔液冷通道各级数量为5、5、7,复合相变材料厚度为5.659 9 mm时,可获得更好的冷却性能,其最高温度、最大温差和压降分别减少了3.40%、35.36%和46.50%。  相似文献   

3.
为满足3 C放电倍率下电池组散热要求,提出了PCM泡沫铝/液冷复合式散热方案,利用有限元法对散热模型进行数值模拟并运用响应面法分析了PCM泡沫铝孔隙率、流道间距、液体流速对电池组温度的影响.研究结果表明:孔隙率和液体流速对电池组最高温度影响显著,增加孔隙率和液体流速可降低电池组最高温度,但当孔隙率和液体流速分别大于84%和0.06 m/s时,电池组最高温度趋于稳定;液体流速对电池组温差影响显著,增加液体流速可提高电池组均温性能,当流速仅为0.04 m/s时,复合式散热系统最高温度为319.0 K,比纯被动和纯液冷散热系统最高温度分别降低了4、4.9 K,且电池组温差仅为1.8 K.  相似文献   

4.
本文3对六种不同类型车厢冬季取暖热量需求,从车厢内、外温差导致热量损失、设备升温吸收热量、内部冷空气升温吸热、人体散热、设备耗电散热、吸收日照热量及换气散热等方面进行了分析和计算,并给出了计算结果。  相似文献   

5.
针对考虑和不考虑界面滑移2种情况,在任意温度分布作用下,推导了钢-混凝土组合梁界面剪力、相对滑移和温度应力理论计算公式,采用有限元模拟对考虑界面滑移的公式进行了验证,并在钢-混凝土温差模式(模式1)、《公路桥涵设计通用规范》(JTG D60—2015)温差模式(模式2)和英国规范BS5400温差模式(模式3)下,对比了温度效应的计算结果。分析结果表明:采用考虑界面滑移的剪力理论公式计算出的组合梁界面剪力分布与有限元计算结果规律一致,3种模式下剪力最大偏差分别为1.15%、2.65%和3.41%;组合梁界面剪力服从双曲余弦函数分布,界面滑移服从双曲正弦函数分布;不考虑滑移与考虑滑移计算得到的界面最大剪力基本相等,最大偏差仅为1.22%;组合梁跨中温度应力计算值的最大偏差小于1%,但组合梁端部温度应力计算值偏差较大,模式3温差为20℃时,考虑滑移时的混凝土底部温度拉应力为不考虑滑移时的1.9倍;组合梁的界面温度效应与温差成线性关系,斜率与温度分布模式有关,模式1的界面剪力、界面剪应力和界面滑移的变化速率最大,分别为9.138kN·℃-1、0.067MPa·℃-1和5.263×10-3 mm·℃-1;温差为30℃时,模式1的界面剪力、界面剪应力和界面滑移变化速率均为模式3的3倍以上,因此,不考虑钢梁温度梯度会使组合梁界面剪力、相对滑移与温度应力计算结果产生偏差,且偏差会随温差的增大而增大。  相似文献   

6.
基于Optistruct软件,运用有限元法对某款电动汽车动力电池包分别进行模态分析、随机振动分析和局部动刚度分析。结果表明:电池包第一阶模态频率为15.7 Hz,略高于外界激励频率,理论上可以避免共振;电池包下端盖的最大应力超过材料的抗拉极限应力;电池包的局部动刚度基本满足要求,0~60 Hz低频段稍微高于标准值,可能是电池包与车体分开作为一个独立体进行仿真造成的误差。本研究结果可为电动汽车动力电池包的设计提供参考。  相似文献   

7.
针对叉排针柱水冷散热器散热的局限性,提出一种叉排针柱多种间隙布置的水冷散热器,通过增大水道中冷却水的湍流度来提高散热器的散热性能。基于ANSYS Icepak仿真软件,对两种散热器进行数值模拟的热仿真,得出其温度场和流场的分布情况,结果表明:在相同流速条件下,叉排针柱多种间隙布置的水冷散热器散热性能较好,并通过使用热敏电阻对其3个点进行实验验证,实验数据与仿真数据偏差低于5.5%,具有较高的一致性,进一步验证该散热器具有较好的散热性能。  相似文献   

8.
为确定不同地区混凝土单箱多室箱梁日照温差代表值,在西藏山南、陕西铜川与广西来宾分别建立了室外日照温度场试验模型,同时安装了大量温度传感器与气象采集器,通过现场实测数据总结了山南、铜川和来宾气象差异性;通过长期箱梁测试温度与逐时气象数据的逐步回归,提出了山南、铜川和来宾箱梁温差计算公式;调研了西藏6个地级市、陕西10个地级市和广西14个地级市1955—2016年的气象数据,并将气象日值数据分解为逐时气象数据用于温差计算,基于超阈值分布模型得到了3个地区重现期为50年的温度作用代表值,并绘制了温度作用分布地图。研究结果表明:箱梁模型实测的向阳侧边腹板竖向温差、中腹板竖向温差、顶板横向温差与底板横向温差从高到低依次为山南、铜川和来宾,说明受地理位置影响,中国不同地区的箱梁竖向温差和横向温差具有差异性;混凝土箱梁顶板向阳侧横向温差均高于底板,山南、铜川和来宾箱梁顶板向阳侧横向温差比底板分别高30.7%、23.2%和11.1%;西藏、陕西和广西的中腹板竖向温差地域差异性最大可达10.5℃,顶板横向温差地域差异性最大可达20.3℃,说明混凝土桥梁的日照作用具有明显的地域差异性。  相似文献   

9.
分析了混凝土结构温度场边界条件计算方法,以青海省海黄大桥H形混凝土桥塔为工程背景,计算了高原高寒地区四季典型气象条件下的桥塔温度场分布,对比了四季的桥塔表面温差和塔壁局部温差,确定了桥塔的最不利温度荷载,建立了桥塔整体有限元模型,分析了四季桥塔的偏位、竖向应力、横向应力和纵向应力等温度效应。分析结果表明:桥塔表面温差与桥塔局部温差均在冬季最大,最大值分别可达11.88℃、20.79℃,在夏季最小,最大值分别可达5.15℃、15.25℃;横桥向和纵桥向桥塔表面温差最大值分别达到9.15℃、11.88℃,远大于《公路斜拉桥设计细则》(JTG/T D65-01—2007)推荐值±5℃;接近正南方向的塔壁局部温差最大,沿壁厚方向的温差分布接近指数形式,冬季和夏季温度衰减系数最大值分别为4.50、5.01,故冬季桥塔壁板局部温度分布较夏季更不均匀;桥塔温度效应同样在冬季最大,1天中最大桥塔偏位超过40mm,白天桥塔偏位变化值超过15mm,不利于施工过程中的桥塔偏位监测;桥塔根部竖向最大拉应力达到2.2MPa,桥塔根部同样产生较大水平向拉应力,纵桥向和横桥向最大拉应力分别为1.82、0.82 MPa,均发生在桥塔内侧,在与其他作用组合时可能会造成桥塔开裂,建议在桥塔塔壁内侧布置一定量的钢筋网片来控制裂缝;在进行高原高寒地区桥塔设计和施工控制时,应充分考虑温度效应带来的不利影响。  相似文献   

10.
为精确预测电动汽车动力电池包的动态特性,建立某款电动汽车动力电池包的有限元模型,采用兰索斯(Lanczos)方法对该电池包进行模态仿真分析。分析发现:电池包的前3阶固有频率分别为9.976、18.836、22.223 Hz,该频率在路面、传动系统、车身、车桥等的外界激励频率0~30 Hz中,使用时极易发生共振现象。由模态振型看出,电池包前6阶模态的最大变形皆位于箱盖顶部。运用OptiStruct软件对电池包箱盖进行形貌优化,对优化后的电池包重新进行有限元模态分析,结果表明:优化后电池包的固有频率均大于30 Hz,可有效减少共振的发生。  相似文献   

11.
以青海省海黄大桥为工程背景,建立了考虑气象参数的组合梁温度场有限元分析模型,采用实桥测试数据对模型进行了验证;分析了"上"形组合梁四季竖向温度分布,给出了升温和降温时竖向温度梯度简化模式,研究了太阳辐射强度、气温和风速等气象参数对温差的影响规律,采用极值统计方法给出了50年一遇气象参数代表值下不同沥青混凝土铺装厚度的"上"形组合梁最不利竖向温度梯度模式。研究结果表明:在日照升温和夜间降温过程中,组合梁竖向温度梯度模式不同;升温过程中最大温差出现在14:00,温度梯度模式可简化为"顶部5次抛物线"加"底部折线"的形式,顶部温差受沥青混凝土铺装厚度影响较大,当铺装厚度分别为0、50、100、150mm时,顶部温差极大值分别为23.8℃、31.7℃、24.1℃、17.4℃,底部温差极大值可取5.1℃;降温过程中最大温差出现在2:00,温度梯度模式可简化为"顶部双折线"与"底部等温段"的形式,顶部温差受沥青混凝土铺装厚度影响较大,当铺装厚度分别为0、50、100、150mm时,顶部温差极小值分别为-12.2℃、-8.2℃、-5.0℃、-2.9℃,底部温差极小值可取-16.4℃;"上"形组合梁竖向温度梯度受气象参数的影响,温度与太阳日辐射总量和气温基本呈线性关系,而与风速表现出非线性关系;"上"形组合梁升温梯度模式与美国AASHTO规范接近,但顶部温差取值较美国AASHTO规范高1.7℃,降温梯度模式与欧洲规范接近,但底部温差较欧洲规范低8.4℃,故本文给出的温度梯度模式更为不利。  相似文献   

12.
动力电池组的寿命直接影响混合动力汽车产业化,而电池组的寿命与其散热性能直接相关。以6.5A.h/144V镍氢电池组为对象,对电池的生热机理进行了分析,建立了电池的生热温度模型,搭建了混合动力汽车镍氢电池组热性能试验台;对电池箱的散热性能进行了试验研究;分析了变电流充放工况对电池组温度场的影响。试验结果表明,使用的电池组能够满足混合动力汽车对电池散热性能的要求。  相似文献   

13.
为探究干寒大温差下早龄期混凝土收缩变形规律,降低开裂风险,采用3种养护方法对混凝土进行早龄期养护,以抗压强度、劈裂抗拉强度、自由收缩率及最大约束应力为表征手段,设置了基本力学性能试验、自由收缩试验与约束收缩试验,并采用综合型多指标的灰色关联法分析了不同养护方式下混凝土的抗裂性能.同时,设计了纳米涂层保温性能试验,探究其对混凝土的保温隔热性能.试验结果表明:在-20.0~15.0℃的循环温度中,采用纳米涂层使得圆柱体混凝土试件内部平均温差降低2.95℃;相比于标准养护,3种养护方式下混凝土抗压及劈裂抗拉强度均有显著降低,干寒大温差不利于混凝土的强度发展;自由收缩率随温度变化明显,呈现出温度降低,自由收缩率增大,反之,温度升高自由收缩率减小,并在-20.0℃与15.0℃时出现极值;最大约束应力受到养护方式影响,自然养护下最大约束应力发展最快,终值最大,薄膜养护次之,涂层养护最大约束应力发展最慢,终值最小;涂层养护下灰色关联度高达0.914 9,明显高于自然养护与薄膜养护,表现出优异的抗裂性能.  相似文献   

14.
针对高速铁路简支箱梁施工过程因混凝土内外温差过大出现温度裂缝的问题,提出了箱梁预应力孔道通水和内腔通风的温差控制措施.确定了混凝土温度应力场仿真参数的取值,并通过温度场仿真结果与试验结果的对比,验证了参数取值的准确性.对自然养护状态下和温度控制措施下简支箱梁温度应力场进行仿真分析的结果表明:通过温差控制措施,简支箱梁混凝土的最大压应力由支点截面段的2.77 MPa降至跨中截面段的2.21 MPa,最大拉应力由支点截面段的1.255 MPa降至跨中截面段的1.00 MPa,从而有效控制温度裂缝的产生.我国规范规定的15℃的温差限值显得过于严格,可放宽至20℃.  相似文献   

15.
为了了解在结冰过程中水的自然对流对蓄冰桶内温度分布的影响以及水的实际的流动情况,利用数值模拟软件对竖直铜管结冰过程进行了研究,通过实验对数值模拟得出的温度分布进行了验证。从数值模拟计算得出:靠近管壁的底角出现了和主流区流动相反的漩涡,且随着时间的推移漩涡不断向上移动;纵向温度分布出现了翻转现象,径向温差很小;且密度翻转现象对冰层的轮廓有影响,使得冰层出现倒锥形。  相似文献   

16.
针对车辆前端散热最恶劣的怠速工况,采用AMESim对汽车空调系统进行建模,通过仿真手段和空调台架试验分析了高、低空调负荷工况下冷凝器的散热边界需求,结果表明:系统模型与整车降温结果最大误差小于1℃,满足实际应用需求;冷凝器的散热能力对汽车空调系统高压压力的影响最大,其次是空调系统能耗,对整车空调的制冷能力影响有限.  相似文献   

17.
牵引变压器散热涉及冷却油与绕组的共轭传热和热油在油冷却器的二次散热. 为准确模拟其温度场随时间和空间的变化规律,在一维假设基础上,建立了牵引变压器(含绕组和冷却油)和油冷却器的分布参数模型,并与油泵和管道等集中参数模型耦合,建立了牵引变压器动态温度场数学模型,同时提出了一套数值求解算法;对一台牵引变压器及其散热系统进行动态温升实验,以此检验了模型预测精度. 研究结果表明:模型预测的牵引变压器冷却油温过渡时间(58 min)与实验值(61 min)吻合良好,稳定工作的冷却油和绕组温度与实验值的偏差分别为1.3 ℃和2.5 ℃,可以用于指导牵引变压器散热系统的工程设计及优化.   相似文献   

18.
为探讨无砟轨道结构温度场分布,通过对成都地区CRTSⅠ型双块式无砟轨道结构冬季温度场监测,分析了不同天气轨道结构温度场的变化规律.基于数理统计方法,提出了成都地区双块式轨道道床板冬季垂向温度荷载模式.研究结果表明:道床板昼夜温度变化较大,支承层温度变化较小,道床板表面最大温差17.50 ℃,支承层底面最大温差0.35 ℃;随深度增大,温度变化幅值减小,道床板温度峰值滞后于气温峰值;轨道结构最大正温差出现在14:30左右,最大负温差出现在约08:00;道床板温度沿深度呈指数函数关系.   相似文献   

19.
为研究钢箱梁顶推施工过程中温度梯度效应对导梁端部竖向变形的影响,选取某高架桥钢箱梁顶推施工最大悬臂工况,结合现场实测温度梯度分布,参考规范拟合出温度梯度公式,采用MIDAS Civil建立全桥有限元模型,分析导梁端部在温度梯度效应下的竖向变形,研究不同时间段梁端竖向变形的变化趋势。结果表明,现场实测温差沿梁高方向最大达26.7℃,根据规范拟合的温度梯度模式可以较好地包络实测温度;悬臂端竖向位移随温差的增大而增大,最大温度梯度作用下的位移超过梁体自重作用下的位移,建议选取温差较小的时段进行顶推落架。研究结果总结出针对钢结构顶推施工消除温度梯度效应影响的方法,可为钢箱梁顶推施工控制提供参考。  相似文献   

20.
长沙综合枢纽双线船闸为大体积混凝土结构,混凝土浇筑量大。在保证工程质量的前提下,不埋设冷却管及其支架,优化混凝土施工配合比,研制和使用超缓凝材料与低热干性高掺低胶混凝土。经温度场仿真模拟与采用经验公式计算,混凝土可能出现的最大内外温差为5.8℃,内部最大温度峰值位于闸墩内部以及与基础接触部位,其他部位在35~50℃之间,计算成果与监测结果接近。温控措施的优化节省了大量的材料及劳动力资源和能源,加快了混凝土的施工进度,可为同类工程大体积混凝土施工提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号