首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 186 毫秒
1.
利用浮运平台拼装及架设钢桁梁   总被引:1,自引:0,他引:1  
陈海 《桥梁建设》2003,(6):62-64
介绍新长铁路大运河特大桥一孔80m钢桁梁的架设,重点介绍直接在浮运平台上拼装钢桁梁,然后架设的主要施工方法。  相似文献   

2.
正2019年5月12日,平潭海峡公铁两用大桥最后一孔简支钢桁梁架设完成(见图1),至此,全桥34孔简支钢桁梁顺利架设完成。此次架设的钢桁梁长80 m,宽35.5 m,重达1 360t。施工过程中,克服了恶劣海况影响下大跨  相似文献   

3.
拖拉施工作为跨线铁路钢桁梁架设施工的主要方法之一,具有经济、快速、不中断现有交通等优点.在跨越繁忙路线的大跨径钢桁梁施工中其优越性更为突显.通过一跨径80m的钢桁梁拖拉施工工程实例,阐述拖拉施工具体方案的设计及验算过程,为类似工程提供参考.  相似文献   

4.
重庆千厮门嘉陵江大桥主桥为公轨两用钢桁梁部分斜拉桥,跨径布置为88 m+312 m+240 m+80 m。作为国内首座重载公轨共建钢桁梁斜拉桥,千厮门嘉陵江大桥主梁刚度大,斜拉索索力大,索力调整困难,为此提出斜拉索1次张拉到位的总体施工方法,并通过仿真分析实现施工方案优化。现场应用表明斜拉索1次张拉到位施工方法可简化施工步骤,提高工效。  相似文献   

5.
公路钢桁梁桥在跨径80~350m范围内具有较强的优势。为给我国公路钢桁梁桥设计提供参考,促进我国公路钢桁梁桥技术进一步发展,介绍美国2座公路下承式钢桁梁桥结构设计和施工创新技术。唐·霍尔特桥主桥为(122+244+122)m的三跨连续钢桁梁桥,诺克塞克跨河桥主桥为跨径107m的简支钢桁梁桥,2座桥桁架采用华伦式,均采用钢筋混凝土桥面板,取消了竖杆、中横联和桥门架端横联的斜撑,采用更刚性的上平纵联与下平纵联体系,桥面系横梁、斜杆的连接采用刚性节点,用钢量指标均较低。唐·霍尔特桥通过采用屈服强度分别为250MPa、345MPa和690MPa的钢材,实现了等高度的三跨连续钢桁梁;诺克塞克跨河桥主桥钢桁梁采用悬臂法施工,混凝土引桥用作钢桁梁悬臂施工背索的锚固系统,没有任何水中施工,保护了水域生态环境,缩短了总工期。  相似文献   

6.
任征 《交通科技》2012,(3):11-13
某城际铁路特大桥主桥跨度为143m+264m+143m,为满足桥下通航净空要求,需选择合理的钢桁梁桥式方案。通过研究斜拉钢桁梁、上加劲连续钢桁梁、自锚式悬索钢桁梁3种不同类型的桥式方案,分别从桥梁结构构造、受力体系、施工方法和工程数量等方面进行对比分析,阐述了不同条件下城际铁路大跨度钢桁梁桥式方案的合理选择。  相似文献   

7.
介绍了韩庄老运河桥80m跨下承式钢桁梁无导梁拖拉施工技术,对钢桁梁结构形式、无导梁拖拉施工特点及难点进行了阐述,着重对临时支墩、上下滑道、水平牵引装置等临时结构进行了设计,对钢桁梁主体结构及临时结构进行了计算分析,对施工中的关键控制点、线形控制、纠偏及防滑溜等技术问题进行了分析并提出了具体的技术措施。  相似文献   

8.
平潭海峡公铁两用大桥深水高墩区非通航桥采用80(88)m的双层结合简支全焊钢桁梁结构,钢桁梁采用带斜副桁的华伦式桁架结构,钢桁梁各构件及节段采用焊接连接。根据现场施工条件,钢桁梁采用工厂整孔全焊制造、海上整孔吊装技术施工。在钢桁梁制造施工中,简支钢桁梁铁路下横梁顶面通过剪力钉与不锈钢复合钢板焊接,采用螺柱焊接技术,实现了3种材质钢材的有效焊接;采用主桁上弦预压技术,缩短公路小纵梁及副桁弦杆,以减少上弦公路桥面系与主桁共同作用对横梁的不利影响。  相似文献   

9.
坝陵河大桥主桥为主跨1 088 m的钢桁梁悬索桥,钢桁梁宽28 m,高10 m,该桥地处宽约2 000m的峡谷,桥面距谷底约370 m,两岸地势陡峭.针对其钢桁梁架设施工难度大的特点,对跨缆吊机法、桥面吊机法、缆索吊机法进行研究,并对其适用性、经济性、安全性及工期进行了综合比选.结果表明:3种施工方法的吊装速度均能满足工期要求,但缆索吊机法需占用较大的拼装场地;跨缆吊机法需改造常规跨缆吊机;桥面吊机法可较好解决施工场地及运输条件难题,施工设备投入较为经济,因此,该桥钢桁梁采用桥面吊机法施工.该方法快速、高效地完成了坝陵河大桥钢桁梁施工,实现了高精度合龙.  相似文献   

10.
公安长江公铁两用特大桥非通航孔(6~10号墩)采用4×94.5m连续钢桁梁结构,连续钢桁梁采用双片主桁结构,主桁中心距14.0m、桁高13.0m、节间距13.5m,共28个节间,主桁弦杆采用焊接整体节点,上、下弦杆在节点外采用高强度螺栓拼接。通过对钢桁梁架设方法研究,并结合工程特点及现场情况,该桥非通航孔钢桁梁采用WD70型全回转架梁吊机散拼法安装,在10号墩后方(公安侧)设置架梁拼装支架,自10号墩向6号墩方向逐节间、逐孔架设钢桁梁。其中,9号至10号墩间钢桁梁采用膺架法拼装;8号至9号墩间钢桁梁采用半悬臂拼装架设法拼装;6~8号墩间钢桁梁采用全悬臂拼装法拼装。该桥钢桁梁于2015年9月1日完成,架设过程质量安全可控,架设后钢桁梁线形良好,满足设计要求。  相似文献   

11.
大跨度钢—混凝土组合箱梁施工技术   总被引:2,自引:2,他引:0  
陈理平 《桥梁建设》2007,(A02):45-48
上海长江隧桥工程105m钢—混凝土组合箱梁是目前国内最大的组合结构连续箱梁,采用梁场预制,大型浮吊海上长距离运输、架设的先进施工技术。简要介绍施工工艺流程及关键施工技术。  相似文献   

12.
武汉天兴洲公铁两用长江大桥钢梁架设边跨合拢施工技术   总被引:1,自引:1,他引:0  
武汉天兴洲公铁两用长江大桥主桥为3片主桁、三索面的钢桁梁斜拉桥,其边跨钢梁合拢架设中遇到钢桁梁刚度大、斜拉索对标高调节力度有限、合拢点多等技术难题. 经过现场监控测量与理论计算分析,采用了岸侧钢梁整体纵移、塔侧钢梁围绕塔墩支座适当转动、斜拉索微调等措施实现了边跨钢桁梁的高精度合拢.  相似文献   

13.
武汉天兴洲公铁两用长江大桥总体设计   总被引:3,自引:9,他引:3  
武汉天兴洲长江大桥位于微弯分汊型河段,为公路6车道铁路4线的公铁两用桥,根据通航要求,南汊为主航道,采用跨度504 m的钢桁梁斜拉桥结构,北汊需布置跨度80 m的桥梁结构。从减少拆迁量和用地、合理利用桥位资源的角度考虑,大桥选择采用铁路公路两用桥方式。经济分析表明,南汊大跨桥梁合建、北汊中小跨度桥梁分建为经济合理的方案。  相似文献   

14.
连镇铁路五峰山长江大桥主桥为主跨1092 m的钢桁梁公铁两用悬索桥,加劲梁采用板桁结合钢桁梁结构,加劲梁恒载集度大(819.1 kN/m)。其中,一期恒载集度达501 kN/m;铁路桥面和公路桥面二期恒载集度分别为233.4 kN/m和84.7 kN/m。针对该桥特点,加劲梁采用整节段吊装,架设时采用不携带铁路二期恒载的方案施工。边跨加劲梁节段利用浮吊整体吊装至滑移支架上,再滑移至设计位置,连接成整体;中跨加劲梁节段采用2台900 t缆载吊机自跨中向两侧桥塔方向架设,节段间上弦设牛腿式临时铰进行铰接,待中跨80%节段吊装后再进行刚接;中跨加劲梁架设后,对边跨加劲梁整体姿态进行调整,通过顶、落梁与中跨加劲梁合龙,合龙后铺设铁路二期恒载。  相似文献   

15.
姚发海 《桥梁建设》2007,(6):6-8,19
武汉天兴洲公铁两用长江大桥主桥为双塔三索面斜拉桥,主梁为板桁结合钢桁梁,3片主桁,采用整体节段架设施工。对钢桁梁整体节段架设的可行性进行分析。  相似文献   

16.
薛进 《桥梁建设》2006,(Z1):57-59
介绍东海大桥主通航孔420 m跨单索面钢箱—混凝土板结合梁斜拉桥上部结构安装施工程序和方法,以及安装施工的要点。  相似文献   

17.
结合钢桁梁正交异性钢桥面板体系研究   总被引:1,自引:1,他引:0  
为研究结合钢桁梁正交异性钢桥面板体系(纵横梁体系、横梁体系、纵梁体系)受力性能的差别,以闵浦大桥为例,采用MIDAS Civil软件建立3种结构体系的主跨桁架局部空间模型进行有限元计算分析,得到如下结论:纵梁体系不适合于结合钢桁梁正交异性钢桥面板结构;横梁体系结构比纵横梁体系受力不利;纵横梁体系在获得足够的净空的同时不至于使整个桁架很高,桥面板受力合理,是最适用于结合钢桁梁的正交异性钢桥面板体系.  相似文献   

18.
四渡河大桥钢桁梁节点板局部应力分析   总被引:1,自引:0,他引:1  
四渡河大桥主桥为单跨900 m双铰钢桁梁悬索桥.主桥加劲钢桁梁的节点板处构造及受力均较复杂,采用通用有限元软件对代表性的节点板处局部应力进行空间分析,为设计提供了参考.  相似文献   

19.
东新赣江特大桥钢桁梁架设施工技术   总被引:3,自引:3,他引:0  
东新赣江特大桥主桥为变截面双主桁连续钢桁梁桥,跨径布置为(126+196+126)m,主桁采用N形上弦变高桁式。为确保主桥钢桁梁准确定位,针对钢桁梁结构特点,在陆地上设置钢梁预拼场组拼杆件,在水上采用浮吊架设,采取膺架与悬臂法拼装相结合的方案,由两端边跨向主跨拼装,采用边墩顶落梁,并结合顶拉钢桁梁纵移的方法进行合龙。通过调整上下弦横向偏移、高差、纵向偏移等技术使钢桁梁中线偏位、主桁高差、钢梁竖向线形等均得到较好控制,实现钢桁梁高精度合龙。  相似文献   

20.
孟加拉帕德玛大桥主桥由41孔跨度为150 m钢桁梁组成,由于钢梁为全焊接结构,采用浮吊与桥面吊机配合整孔安装的施工方案,钢桁梁吊装上桥后不具备线形调整的条件.钢梁竖向线形误差要求控制在±20 mm以内,对比国内同类桥梁,线形控制要求高;且支座下摆允许偏离设计位置±10 mm,整孔钢桁梁纵向制造长度控制难度大,通过研究影响预拱度理论计算的因素,以及预拱度的设置方法,为工程的顺利实施提供理论依据.其成果对同类国际工程具有参考意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号