首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Studying the in-situ stress distribution at a tunnel site is very important to determine surrounding rock characteristics, the engineering design and the construction scheme. By using the multiple linear regression method based on the least square algorithm, the initial geostress field is analyzed and the corresponding regression coefficients are obtained. The ground stress obtained from the proposed back analysis is reasonable and can meet the demands of the engineering applications. From the rockburst risk level distribution diagram, it is speculated that the Wunvfeng tunnel is in the high filed stress area. Field monitoring should be strengthened and emergency plans should be made to cope with the rockburst risks during the construction process. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

2.
Combining the present situation and development trend of different tunnel support technologies at home and abroad, this paper analyzes the problems of rockburst in hard rock tunnels and large deformation in soft rock tunnels caused by high ground stress. It is concluded that: 1) regarding the rockburst problem, the current support technology is mainly influenced by the rock burst mechanism which is dominated by static factors, and so the used support components are generally of smaller deformation performance and "passive support" properties; 2) as the rockburst is the result of dynamic-static stress coupling, and only the anchor bolt has the "active support" attribute in the current "shotcrete+anchor bolt+wire net" support system, so the best support system should have the two functions of active support and energy release in terms of the rockburst problem, and the key focus of the research and development is anchorage members; 3) there are three main support types for large deformation in soft rock tunnels, e.g. the heavy support, layered support and yielding support. Among them, the heavy support system in underground cavern with large deformation is easy to induce excessive surrounding rock pressure, and so the applicable conditions are limited. The layered support system is still not the best choice due to its immature theoretical study, difficult determination of the thickness value and the installation time of each support layer and the interference to construction progress. With the characteristics of timely support and yielding while supporting, the yielding support system can give full play to the performance values of surrounding rocks and supporting materials, and make both of them reach the optimal state, so it is the best choice for supporting the soft rock tunnels with large deformations. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

3.
Based on a shield-driven running tunnel project of Hangzhou Metro Line 2, this paper carries out field measuring of the ground surface deformation caused by two different shield machines in double-tube tunnelling in soft soil areas, obtains the laws of the surface deformation caused by shield-driven double-tube tunnelling and verifies the applicability of the modified Peck formula to double-tube tunnelling. The results show that in soft soil areas the impacts on ground surface deformation caused by different shield construction parameters in the previously and subsequently excavated tunnels are different, while the surface deformation changes sharply before and after the shield machine passing through the cutting face, and a rebound phenomenon occurs when the shield tail passes through the cutting face due to the influence of the grouting; The cutterhead torque of the shield machine in soft soil areas can be composed of five calculation factors, and the calculation results are in good agreement with the measured values. The larger the opening rate of the shield cutterhead is, the larger the average torque value will be, the higher the percentage of large ground loss rate will be, and the larger the maximum ground surface settlement will be; The ratio of cutterhead torque T to mucking volume per ring Q is used as the control parameter for analyzing the ground surface settlement, and a certain positive correlation between the ratio and the surface settlement value is determined, the smaller the cutterhead opening rate is, the more accurate the fitting results will be. © 2022, Editorial Office of Modern Tunnelling Technology. All right reserved.  相似文献   

4.
Liu C.  Lu Y.  Liu L.  Lv W. 《现代隧道技术》2018,(5):245-253
The problem of filter-cake formation in highly permeable strata is urgently to be solved for slurry shield tunnelling. Adding coarse-particle materials in slurry is an effective method to solve the problem. A selfdesigned test device of slurry invasion and filter-cake formation in strata was adopted, and one kind of lightweight sand was selected as coarse particle materials. By changing the particle sizes of light-weight sand particles, the filtrate mass and the time of filter-cake formation under the condition of different additive contents and pressures were measured. And the influence of particle size of coarse-particle materials on filter-cake formation characteristics was analyzed. A triangular constriction calculation method was proposed, which can be used to quickly determine the influence range of coarse-particle materials on the pore size variation of the strata. The test results show that: (1) the addition of coarse-particle materials can significantly reduce the inter-particle pore size and effectively improve the clogging effectiveness under the condition of this tested strata. (2) The particle size of coarse-particle materials has a great influence on filter-cake formation characteristics. The coarse-particle material with smaller particle size has a better clogging effect, and its filter-cake formation characteristics are more stable. The coarse-particle material with larger particle size has a higher volatility in its filter-cake formation characteristics. (3) Coarse-particle materials with different particle sizes result in different final filter-cake structures. When the coarse-particle materials possess a larger particle size, a mixed filtercake structure is formed, and when the particle size is small, a double-layer filter-cake structure is formed. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

5.
Waterseepageofakarsttunnelsectioninsoilsurroundingrockispronetosurfacesubsidence.Considering the settlement caused by descending of water level due to water leakage, a method of surface settlement estimation under steady seepage of phreatic water was proposed. Based on the seepage and consolidation theory, the changes of dead-weight and seepage effective stress of soil unit in surrounding rock was analyzed in condition of water seepage, and the settlement zone of surrounding rock was divided by taking the funnel curve of precipitation as the boundary line. A two-dimension plane was established based on the excavation cross section and the estimation formula for surface settlement due to seepage effect was deduced by means of double integral. On the basis of Yaozhai tunnel of Liuzhai-Hechi Expressway in Guangxi Zhuang Autonomous Region, the surface settlement of soil surrounding sec⁃ tion was predicted by field measurement and formula estimation respectively. Facts and figures show that the mea⁃ sured values are mainly consistent with the estimation ones, while the measured values are larger than the estima⁃ tion ones within the scope 3 m away from the excavation face along the horizontal radial direction. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

6.
Atrium-type subway stations have been utilized for multifunctional demands. For natural lighting, the middle parts of slabs are replaced by beams. And to expand space, no columns are set for the 1st floor underground, while flat columns are set for the 2nd floor. These characteristics make the seismic response of the atrium-type subway station differ from the traditional station. In this paper, by a shaking table test of soil-structure 1/30 scale model of the atrium-type subway station, the amplification and attenuation effect of soils to the ground motion, as well as the acceleration and the strain response of the structure are analyzed when the model is subjected to lateral ground motions with different PGA and frequency contents. Subsequently, the seismic dynamic effect on the structural internal force distribution is discussed to improve the seismic design of the atrium-type subway station. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

7.
After 1975, the appearance of finite element numerical limit method and the application and development of computer technology have brought the elastic-plastic analytical calculation of engineering materials into a new era of numerical limit calculation. The new methods, namely, strength reduction method and load increment method, as well as the recently proposed ultimate strain method, are adopted in the rock tunnels studied in this paper. To solve the uncertainty of mechanical parameters of surrounding rock in rock tunnels and provide more scientific and reasonable mechanical parameters of surrounding rock, the surrounding rock classification must be made combining theory, investigation and experience. Taking the surrounding rock classification in rail transit tunnels as an example, the improvement of the classification level includes improving the strength index, mainly adopting the quantitative classification method, reasonably determining the basic index BQ value of rock mass quality, increasing the number of surrounding rock classifications, formulating the surrounding rock classification tables for the running tunnel and the station tunnel, and achieving the coordination and unification of qualitative and quantitative classification methods. Finally, the quantitative indexes of surrounding rock self-stability are determined, and the more scientific and reasonable physical and mechanical parameters of surrounding rocks are put forward through back calculation. © 2022, Editorial Office of Modern Tunnelling Technology. All right reserved.  相似文献   

8.
The limit states of railway tunnel portal structure including compression, tensile, anti-overturning, antisliding and bearing capacity of foundation should be considered when portal structure is designed based on the prob⁃ ability limit state method. In order to evaluate the reliability of portal structure, the reliability index and limit state of bearing capacities of different limit states need to be calculated. The traditional methods generally use hand compu⁃ tation combined with MATTLAB, ANSYS, EXCEL and other softwares, which has low computation efficiency and poor practicality. In view of above problems, a calculating software for portal structure was developed based on the probability limit state method and Visual Basic platform, which realizes the function of rapid calculation of reliabili⁃ ty index and limit state of bearing capacities under five limit states of portal structure, offers three methods to calcu⁃ late the reliability index including JC method, fractile method and Monte-Carlo method. Moreover, the calculation results can be written in the EXCEL template file, greatly improving the efficiency of tunnel portal structure calcula⁃ tion. The accuracy of the software is verified by comparing with the results of hand calculation. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

9.
One of the major concern in the excavation in soft soil areas is the effect of soil movement on adjacent pile foundations. In this paper, three-dimensional finite element models are established to study the axial response of the adjacent pile foundations close to an excavation in soft soil. The results show that, due to the nearby excavation, the axial bearing capacity of a single pile under compression decreases about 13.6%, and considerable additional settlements of a single pile subjected to the working compression load are generated. Therefore, the characteristics of load transfer mechanism between pile shaft and around soil, as well as the tip soil reaction are investigated extensively, which demonstrates that, as expected, the nearby excavation leads to a reduction of ultimate soil friction resistance. Furtherly, the widely employed load transfer method for pile foundation is modified to consider the effects of nearby excavation, which can be employed to predict the axial response of an axially loaded pile foundation beside an excavation. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

10.
Restricted by site and construction period of ancillary structure of metro project, climbing excavation is often adopted. In order to determine tunnel face’s stability, the stabilities of working face in the cases of climbing ex- cavation and horizontal excavation were analyzed by theoretical analysis and numerical simulation. With upperbound limit analysis, the affected scope and positions of failure zone were compared; the position of equivalent strain zone and the law of horizontal displacement changes were studied by simulation analysis. The results show that the scope of failure zone caused by climbing excavation was slightly larger than that by horizontal excavation and the po- sition of affected zone is slightly lower than that by horizontal excavation; the horizontal displacement caused by climbing excavation within a scope of 0-1/3 height of tunnel face is slightly larger than that by horizontal excavation while it is slightly smaller beyond the scope of 0-1/3 height of tunnel face; the maximum horizontal displacements in the cases of climbing and horizontal excavation both occur at the place where is 1/3 height of work face and the de- formation of work face in the case of climbing excavation is not larger than that of horizontal excavation; the work face stabilities are mostly the same in the cases of climbing and horizontal excavation without regard to advanced support, and the work face stability is to be guaranteed with proper advanced support. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

11.
The operation safety of the public transport is seriously threaten by the occurrence of defects and damages in existing urban tunnels, which affects the quality of traffic, and will shorten the service life of urban tunnels. Therefore, it is of great significance to evaluate the damages of the tunnel lining structure quickly and accurately. The damage evaluation methods of the existing urban tunnel lining structure are investigated and analyzed in this paper, and a combination method of the macroscopic evaluation of the existing damaged urban tunnel and the damage mechanism of the lining structural material is proposed. Among them, the assessment method specified in the national criterion is selected to evaluate the damages of the lining structure for the macroscopic evaluation, and the classification of tunnel health levels is optimized. Meanwhile, the damage modulus based on the elastic modulus is selected, and the concept of elastic modulus reduction rate is introduced for the mechanism of damage. Furthermore, the assumed function relationship between the health level and the damage degree of existing urban tunnels is proposed and established, which provides a new idea for structural damage assessment of existing urban tunnels. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

12.
With the rapid development of tunnel construction in China, strengthening statistical studies of domestic tunnel construction accidents is of great significance in order to understand the safety status of tunnel construction and the development trends of tunnel construction accidents and for exploring the direction of future scientific re-search. There were 89 tunnel construction accidents in China (not including subway tunnels or municipal tunnels)from 2006 to 2016. The characteristics of these accidents are analyzed in terms of time distribution, spatial distribu-tion, grade and type of accident according to the statistics by means of line charts, bar charts and pie charts. Corre-sponding prevention and control recommendations are put forward considering the factors such as year, month, work-ing day, time period, region, location, grade and type. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

13.
Jacking force is the most important parameter in jacking pipe engineering, and reasonable calculation of jacking forces plays an important role in safe and smooth pipe jacking construction. There are many calculation methods for pipe jacking force at present, and the calculation results may be affected to some extent by different cal⁃ culation methods. For this reason, calculation methods of jacking force (frictional resistance) were collected and a comparative analysis was conducted with aspects to the advantages, disadvantages and applicabilities. The results show that as for the jacking force calculated by empirical formulae, the soil layer classifications corresponding to giv⁃ en frictional force per unit area and relevant factors to be considered are different, and the values of frictional force per unit area between pipe and soil in the same soil layer are also different; as for the jacking force calculated by theo⁃ retical formulae, the calculation methods for vertical earth pressure at crown are different and much effected by the pipe buried depth; as for the jacking force calculated by numerical simulation, the selected theories for the simula⁃ tion program and the construction factors to be considered during simulation are different. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

14.
Wet shotcrete spraying units are widely used in underground engineering, for railways, highways, water conservancy and hydropower stations, municipal works, mining and military and other industries. Structural analysis and mechanical behavior optimization are conducted regarding the lifting arm of a TKJ series shotcrete spraying unit, and optimization of the hinge point position and working scope of the lifting arm is realized. The optimal layout scheme for the hinge force is given based on the Monte Carlo method, the hinge force of the lifting arm is improved for the mean and maximum values, and the maximum and average hinge force of the lifting cylinder decrease by 23.14% and 7.70%, respectively, compared with that of the original scheme. The static strength is checked using Ansys-Workbench for the optimized scheme, and the results show that the optimized scheme has a larger safety re-serve and that the structural design is more reasonable than the original scheme. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

15.
In order to study the laws of core rock deformation and’lost’rock deformation in soft rock tunnels with high ground stress, the deformations of core rocks in front of the working face and surrounding rocks are monitored by model test method, and the tunnel excavation process is simulated in detail under different high ground stress levels and working conditions with/without lining. The results show that: (1) the ground stress plays a key role in determining the installation time of soft rock tunnel support; (2) the advance deformation within 0.5D in front of the face accounts for about 2/3 of the total advance deformation; (3) the’lost’deformation behind the tunnel face has a great impact on the monitoring and measurement. With a certain high ground stress, there is a power function relationship between the’lost’deformation and the distance from the tunnel face. With the high ground stress greater than 20 MPa, it has little impact on the’lost’deformation; (4) in order to effectively control the advance deformation in soft rock tunnels with high ground stress, it is necessary to reinforce the core rock mass within 0.5D in front of the tunnel face. For the core rock mass within 0.5D~1D in front of the tunnel face, the reinforcement depends on the actual situation. © 2022, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

16.
The circulation system of a slurry shield is composed of a transportation system and a processing system.For shield construction, correct selection of the circulation system for the slurry shield is directly related to construc-tion speed. Using the Nanjing Yangtze tunnel as an example, the material balance calculation of the circulation sys-tem, sieving effect analysis, and analysis of the muck carrying ability of the dredging pipe are conducted for various strata. The practical results show that above mentioned calculations and analysis method provide a good reference for the proper selection of a slurry separation system and dredge pipe. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

17.
The circulation system of a slurry shield is composed of a transportation system and a processing system.For shield construction, correct selection of the circulation system for the slurry shield is directly related to construc-tion speed. Using the Nanjing Yangtze tunnel as an example, the material balance calculation of the circulation sys-tem, sieving effect analysis, and analysis of the muck carrying ability of the dredging pipe are conducted for various strata. The practical results show that above mentioned calculations and analysis method provide a good reference for the proper selection of a slurry separation system and dredge pipe. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

18.
Adopting Hardening-Soil finite element model based on soil unloading conditions, the influence of external wall insertion ratio on deformation of retaining structure and soil was studied taking the foundation pit of a metro transfer station of Suzhou metro line 1 as background. The results show that the maximum lateral displace- ment of external wall decreases with an increase of insertion ratio within the range of 30-35 mm, and the lateral de- formation at the foot of wall increases significantly in a linear form; the lateral deformation at the top of internal wall obviously increases linearly, while the maximum of lateral wall deformation of wall body increases slowly and there is almost no change at the bottom of wall; the uplift at the internal pit bottom is more than 90 mm and it is slightly effected by the insertion ration of external wall while the uplift at the external pit bottom is more than 70 mm and it increases with an decrease of the distance away from the external wall; soil mass settlement at the back of the exter- nal pit is obvious and it decreases with an increases of insertion ratio of external wall within the range 14 m away from the external wall, and the settlement reaches the maximum when the insertion ratio of external wall is 0.25 while the tendency of settlement develops reversely when the distance from the external wall is beyond 14 m. To en- sure the safety and reduce environmental impact, it is significant to determine a reasonable insertion ratio of exter- nal wall regarding the pit-in-pit excavation. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

19.
This paper presents the technology measures, equipment selection and required grout properties and re-lated techniques for the grouting base-station arrangement of the drag reduction system of the Fuchun River pipe jacking project, which is characterized by a combined stratum, a longitudinal curve with a large falling head, a large gradient and high water pressure. Drag reduction by grouting can effectively reduce the friction coefficient in pipe jacking construction, decrease the time and frequency of the relay station, improve construction efficiency, and re-duce the grout loss along the stratum fissure while guaranteeing grouting pressure of the terminal, is favorable for sta-ble annular bentonite grouting between the stratum fissure and the segment. © 2018, Editorial Office of "Modern Tunnelling Technology". All right reserved.  相似文献   

20.
In order to study the influence of spray-applied waterproofing membrane layer on the mechanical properties of tunnel lining structure, a numerical calculation model of composite lining, spray-applied waterproofing lining and single-shell lining is established according to the mechanical parameters and interface parameters of waterproofing membrane measured by tests, and comparative analysis is made on the mechanical properties of the three types of lining structures. The research results show that: (1) compared with the composite lining, the stress of the secondary lining in the spray-applied waterproofing lining structure is significantly reduced, and the stress of the initial support has little change, but the displacement of both the initial support and the secondary lining increases; (2) in the spray-applied waterproofing lining structure, the whole section of the secondary lining is in the state of small eccentric compression, and the safety factor is greatly improved; (3) spray-applied waterproofing membrane layer can improve the cooperative force-bearing capacity of initial support and secondary lining, and improve the stress state of secondary lining, which is beneficial to improve the safety of secondary lining; and (4) with the increase of the cooperative force-bearing capacity of spray-applied waterproofing lining structure, the internal force of spray-applied waterproofing lining structure will be infinitely close to that of single-shell lining structure. © 2022, Editorial Office of Modern Tunnelling Technology. All right reserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号