首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
列车在高速会车时产生的空气压力波会给交会车辆的侧窗造成很大的冲击,有可能出现破窗事故,给乘客和列车运行带来安全隐患。基于三维、非定常两方程湍流模型,利用计算流体软件Fluent,对某型地铁车辆与不同型号的铁路高速列车(CRH380A、CRH2、CRH3型)交会时的空气动力学性能进行了数值仿真,得到侧窗上的会车压力波变化曲线。仿真计算结果表明:在地铁列车与铁路高速列车的交会过程中,地铁列车所受到的侧力远大于高速铁路列车所受到的侧力,交会产生的瞬变压力波对地铁列车侧窗的影响也更大。当地铁列车与CRH380A型高速列车交会时,与其和其它两种型号的列车交会相比,地铁列车侧窗所受到的压力波幅值最小,而当地铁列车与CRH2型铁路列车或CRH3型铁路列车交会时,地铁列车侧窗所受到的压力波幅值均较大,其波动的峰峰值也更大。  相似文献   

2.
研究目的:高速列车通过铁路挡风墙及在墙内交会时,挡风墙和列车的耦合空气动力响应会影响列车的运行安全与舒适性。本文基于高速列车气动性能动模型试验,对列车单车、交会通过挡风墙时的耦合空气动力响应进行测试与分析,以期得出挡风墙模型表面和列车车体表面压力波值及其变化传播规律。研究结论:(1)单车运行时,挡风墙内、外侧测点压力波最大值、最小值和幅值随测点水平位置变化不大;而交会运行时,挡风墙内、外侧测点压力波最大值、最小值和幅值的绝对值在挡风墙中间交会处最大;(2)就挡风墙内、外侧表面压力变化而言,外侧测点压力波幅值远小于对称的内侧测点,对内、外侧测点,其压力变化幅值近似与列车车速的平方呈正比关系;(3)挡风墙内侧测点压力值随高度增加而减小,外侧测点压力值随高度增大而增加,建议挡风墙结构设计计算时主要考虑其内侧测点压力变化影响;(4)本研究结论可为高速铁路列车安全及防风工程的计算和设计提供基础。  相似文献   

3.
基于标准κ-ε双方程湍流模型,采用滑移网格方法,对不同编组长度(3车编组,4车编组,5车编组和8车编组)高速列车明线交会以及于各自最不利长度隧道通过和交会工况进行模拟,并对车体表面产生的交变压力载荷进行研究。数值计算结果和实车试验结果进行对比,波形吻合度高,误差不超过6%。研究结果表明:列车明线交会时,列车压力波尾波幅值由3车编组到8车编组减小11%;列车于各自最不利长度隧道通过和交会时,编组长度不改变列车车体表面压力波变化规律,但对幅值有较明显影响;列车通过隧道时压力波峰峰值由3车编组到8车编组增大14.0%,列车于隧道中心处交会时该值增大26.4%。  相似文献   

4.
采用三维非定常、黏性、可压缩N-S方程和RNGk-ε双方程湍流模型,基于滑移网格技术,对8节编组的城际列车以160km/h速度通过地下越行车站的空气动力学性能进行模拟,分析列车速度和流线型长度对其瞬变压力的影响。研究结果表明:数值计算得到的车体和隧道表面测点的压力变化曲线与动模型试验的结果吻合较好。车站内部结构多变不对称,列车表面左右对称测点压差不明显,屏蔽门与其对面车站内壁对称测点的压差主要发生在头车通过时,屏蔽门上压力幅值比对面车站内壁大54.32%;屏蔽门表面压力变化幅值沿高度和纵向逐渐减小;流线型长度由1.5 m增加到5.5 m时,列车表面压力最大减小了10.52%,屏蔽门入口段压力变化幅值最大减小了14.06%。  相似文献   

5.
基于三维、非定常雷诺时均N-S方程和标准k-ε双方程湍流模型,采用滑移网格技术,对高速列车明线交会及隧道内交会时的空气流场进行数值模拟。研究不同线间距对高速列车交会压力波的影响。研究结果表明:明线交会压力波幅值随线间距的减小而增大,线间距从4.6 m变为4.4 m时,交会压力波幅值增大约8.3%;线间距从4.4 m变为4.2 m时,交会压力波幅值增大约8.5%;隧道交会压力波头波幅值随线间距的减小而增大,对非交会时段隧道压力波影响不大,线间距从4.6m变为4.4 m时,车体表面测点交会压力波头波幅值增大5.7%;线间距从4.4 m变为4.2 m时,交会压力波头波幅值增大5.8%;隧道壁面测点压力波幅值增加约2%,且隧道内2车交会,靠近交会位置的测点压力变化要远大于远离交会位置的测点。  相似文献   

6.
针对高速列车通过短隧道群所引起的空气动力学效应问题,利用计算流体力学软件Fluent进行了仿真分析。对列车以不同时速通过不同间距的短隧道群时车体表面及隧道中断面的受力情况进行了研究。结果表明:列车通过短隧道群时车体表面最大负压比通过单隧道时大131%,出现在隧道间距与列车长度相当时;随着速度的增大,车体表面的压力变化幅值增大,且车体表面的压力幅值近似与列车运行速度的平方成正比;列车通过短隧道群第1座隧道时隧道中断面压力变化幅值与通过单隧道时接近,通过第2座及第3座隧道时隧道中断面的压力幅值比通过单隧道时增大,且在隧道间距25~100 m时压力幅值随隧道间距增加而增大。  相似文献   

7.
为探明横风作用下车体侧滚对列车气动性能和运行稳定性的影响,采用三维、定常、不可压缩雷诺时均方程和k-ε双方程湍流模型,对CRH5G动车组进行仿真计算。研究结果表明:当侧滚角从0°增加到2.5°时,车底部迎风侧负压减小,绝对值最大相差532 Pa,车顶迎风侧负压增大,绝对值最大相差579 Pa,车底压力变化的区域更大,车顶和车底背风侧的压力变化都不大;头车后部车底负压减小,绝对值最大相差470 Pa;气动力方面,列车升力增大,头车升力变化最为明显,从0.15 k N增加到16.6 k N;头车的点头力矩提升了20%,尾车的点头力矩下降了7%;进一步的车辆动力学仿真计算结果表明:车体侧滚引起的气动载荷变化对列车脱轨系数、倾覆系数的影响很小。因而在研究横风作用下的列车运行稳定性时,一般可不考虑车体侧滚对气动性能的影响。  相似文献   

8.
重载列车过大的纵向冲动,成为制约重载列车发展的瓶颈。使用列车空气制动与纵向动力学联合仿真系统,以摩擦式缓冲器为研究对象,根据缓冲器运动机理,构建缓冲器阻抗力与压缩行程变化的非线性模型。分别研究缓冲器初压力和缓冲器不同行程区段上阻抗特性变化对重载万吨列车在运行工况下纵向冲动的影响规律。仿真结果表明:适当提高缓冲器初压力和缩短过渡段的压缩行程或增大过渡段区间首尾阻抗力差,能减小重载列车车钩力最大值,但会使加速度变大;减小缓冲器稳定区段的阻抗值,能有效减小列车车钩力和加速度,降低列车的纵向冲动。在有无牵引杆两种条件下缓冲器各区段阻抗特性变化对列车纵向冲动的影响规律基本相同。可为缓冲器的阻抗特性设计提供理论依据。  相似文献   

9.
列车空气动力性能与流线型头部外形   总被引:5,自引:0,他引:5  
采用数值计算、动模型试验、风洞试验、实车试验和理论分析等方法,研究列车流线型头部长度、宽度、高度及耦合外形对列车交会压力波、空气阻力和升力的影响,得到一系列理论关系式。研究结果表明:①增加列车流线型头部长度,可以有效地改善列车空气动力性能,列车交会压力波随流线型头部长度增加而呈对数减小,头车阻力、升力绝对值均随流线型头部长度的增加呈线性减小,尾车阻力与流线型头部长度呈二次幂减小;②流线型头部纵向对称面最大控制型线从外凸到内凹,列车空气阻力、空气升力和交会压力波基本不变,减小鼻尖部位过渡曲线的曲率半径可以有效降低列车交会压力波;③流线型头部俯视最大控制型线为方形时产生的交会压力波最小,尖梭形的头车空气阻力和升力绝对值较小;④减小列车空气阻力和降低列车交会压力波,既矛盾又统一,列车气动头部外形设计需要综合考虑各种因素。  相似文献   

10.
基于可压缩流体的纳维—斯托克斯方程和RNG k-ε模型,以由头车、中间车和尾车3辆车编组的某高速列车1∶8风洞试验模型为研究对象,采用计算流体动力学软件(CFD),建立包括车体和走行部的三维非结构化列车表面离散网格模型和列车与隧道、列车与明线空间的组合计算网格模型,研究高速列车通过隧道时气动阻力的时变特性和规律.结果表明:高速列车在车尾刚进入隧道人口时其气动阻力达到最大值,为同样工况下明线运行时的2.5倍;高速列车完全进入隧道后,其气动阻力在一段时间内处于相对平稳期,为明线运行时的1.8倍;之后在隧道压力波的作用下,高速列车的气动阻力会发生准周期变化,变化幅度接近明线运行时的60%;在隧道长度大于高速列车长度的前提下,高速列车通过不同长度隧道时,其进入隧道时的气动阻力最大值均比较接近,而且在隧道内运行时的气动阻力变化特征和幅值也基本相同.  相似文献   

11.
地铁列车通过隧道时的气动性能研究   总被引:1,自引:0,他引:1  
列车通过隧道时引起的空气动力效应会对列车运行的安全性、乘客乘坐的舒适性等产生不良影响。基于列车空气动力学理论,采用计算流体力学软件FLUENT对某型号地铁车辆通过最不利长度隧道时的空气动力学性能进行数值模拟,得到并分析了地铁列车和隧道壁面监测点的压力时程曲线和分布特征。研究表明:车体表面压力峰峰值、3 s内车内压力波动最大值及隧道内附属物压力峰峰值,与列车速度的平方近似成线性关系;隧道断面净空面积越小,车体承受的压力越大;地铁列车通过隧道时需限速,以达到人体舒适性评价标准。  相似文献   

12.
高速磁浮列车通过隧道过程中将引起剧烈的压力波动,造成司乘人员耳感舒适性、车体及其零部件、隧道衬砌及辅助设施的气动疲劳寿命问题,有必要对磁浮列车高速通过隧道时压力波效应进行研究。采用一维可压缩非定常不等熵流动模型和广义黎曼变量特征线法对单列车通过隧道时车体压力载荷进行数值模拟研究,初步揭示隧道长度、列车速度、阻塞比对车外压力波的影响规律;得出时速500~600 km/h速度下基于最大正负值和最大压力峰峰值的最不利隧道长度;论证了列车通过隧道产生的压力波幅值与列车速度平方成正比的适用范围,总结了压力最值与速度的拟合关系式。本文研究方法和结果可为车体设计选用气动载荷提供参考依据。  相似文献   

13.
列车交会压力波与运行速度的关系   总被引:4,自引:0,他引:4  
随着列车速度的提高,列车交会时产生的瞬态压力冲击对行车安全、旅客舒适性均产生严重影响。根据多次实车试验结果和理论分析,将列车交会分为列车静止交会、等速交会和不等速交会3种工况,研究了3种工况的列车交会压力波与运行速度之间的关系,得到一系列回归关系式。研究结果表明:静止列车上的压力波与交会列车运行速度的平方成正比;两列车等速交会时,列车上的压力波幅值与两交会列车的运行速度和相对速度的平方成正比;两列车不等速交会时,高速列车承受的压力波幅值小于与之交会的低速列车所承受的压力波幅值;两列车等速交会时的压力波大于一方列车静止时交会的压力波。  相似文献   

14.
列车高速通过人行天桥底部正线时,桥体表面受到较大的瞬变气动荷载作用,引发桥体结构振动并影响到桥上旅客的舒适性以及桥体结构的疲劳寿命。通过数值仿真计算研究单列高速动车组以不同速度通过人行天桥时,天桥表面的气动载荷空间变化规律。结果表明:在本文计算条件下,车桥系统周围的流场达到了自模拟区,列车运行速度增加不会对天桥表面的气动压力系数造成较大影响;列车通过人行天桥底部时,天桥迎风侧以及底部依次出现压力先上升后迅速下降再上升的头波、中间车辆通过时的负压区域、以及压力先下降后迅速上升再逐渐衰减为0的尾波,桥底越靠近中心处压力变化峰峰值越大;天桥迎风侧仍然是对应于正线的测点头波压力变化峰峰值最大,同一测线上测点越高压力变化峰峰值越小。  相似文献   

15.
基于延迟脱体涡算法和滑移网格技术,建立CRH380A型列车的含有转向架的三维可压缩瞬态仿真模型,模拟研究高速列车气动力、速度场和表面压力这3大绕流特性的变化规律。结果表明:延迟脱体涡算法能较好地捕捉列车通过隧道时的气动特性;当列车头部刚驶入隧道时,气动阻力迅速升高并在车头完全进入隧道时达到最大值,列车下方2侧的速度纵向分量会急剧增加,位于靠近设备舱位置的速度纵向分量会显著降低;当尾车刚驶入隧道时,隧道内壁与列车侧面之间的流场会出现回流区;当尾车全部刚驶入隧道时,气动升力和侧向力骤然增加;当列车全部驶入隧道后,气动力的波动幅值均明显升高;列车通过隧道过程中,列车侧面压力整体上呈现先增后减、最后维持周期性波动的趋势,处于尾流区的车尾部位具有更强烈的波动特征;列车裙板和车底的表面压力整体上均呈先减后增、最后维持在较高幅值波动的趋势,对列车相关结构的疲劳强度产生不利影响。  相似文献   

16.
为研究高速列车通过高海拔、大坡度和特长隧道下压力波的特性,基于一维可压缩非定常不等熵流动模型的广义黎曼变量特征线法模拟列车通过隧道时的车外压力,采用时间常数法计算车内压力;分别利用国外数值模拟结果和国内西成高铁实车试验数据,验证方法的合理性和准确性;以速度200 km·h-1的单列8编组高速列车为研究对象,分析列车通过4种海拔、5种坡度和4种长度组成的不同隧道时,车内外压力波动和最值的变化规律。结果表明:隧道内初始压力是影响车内外压力幅值的根本原因;车内外最大正、负压均随隧道海拔的升高而线性减小,随隧道坡度和长度的增加而线性增大;与下坡相比,列车上坡运行时车内的压力舒适性更为恶劣、气密性要求更高;列车上、下坡通过坡度30‰、进口端海拔4 500 m、长42 km隧道时,车外最大正、负压分别为9.85和-9.63 kPa,列车动态气密时间常数不应小于1 713 s。  相似文献   

17.
以CRH3型高速列车为研究对象,采用计算流体力学(Computational Fluid Dynamics,CFD)数值模拟方法和动网格技术,通过局部动态层变法实现对侧向风作用下桥上列车交会过程的动态模拟,研究侧向风作用下桥上列车交会过程的空气动力特性。结果表明:无侧风情况下桥上列车交会时所产生的交会压力波是导致列车气动力波动的主要原因;在侧向风的作用下车-桥耦合系统的空气动力特性表现出明显的三维时空特性;与无侧向风作用相比,在侧向风的作用下,两交会列车车体表面的整体压力分布已不再具有对称性,其中迎风侧列车所受风荷载较背风侧列车的大;在列车交会过程中,由于迎风侧列车对侧向风的遮挡效应,使得背风侧列车的风荷载突变更加剧烈,这对背风侧列车过桥的安全性和舒适性更为不利;随着列车运行速度的提高,列车的侧向力系数、倾覆力矩系数逐渐增大,而且其气动力系数在列车交会瞬间的突变更加剧烈。  相似文献   

18.
为了对列车端部吸能装置的稳态阻抗力进行优化,对列车纵向碰撞模型加以改进,以此为基础,研究吸能装置实际吸能量与其稳态阻抗力的关系。发现吸能量随着阻抗力增大呈现先增大后减小的趋势,且吸能装置在碰撞结束时恰好用尽全行程的情况下其实际吸能量达到最大值。为了确定此时的阻抗力,通过动力学分析推导其理论最优阻抗力。以某列车在不同场景下对撞为例,计算发现各场景下吸能装置采用理论最优解时的吸能量均为各自对照组中的最大值,并对数值设计的可靠性进行验证。  相似文献   

19.
盾构隧道开挖面最小支护力与开挖面上方土拱效应密切相关。模型试验结果显示,地下水的存在会减小开挖面上方土拱高度;数值计算结果表明,砂土内摩擦角变化是地下水影响土拱高度的主要方式。针对此现象,本文结合楔形体模型对开挖面最小支护力计算方法进行分析,提出计算开挖面最小推力的修正系数,即通过对上方棱柱体受到的侧土压力系数进行修正来体现地下水对开挖面上方土拱效应的影响。分析结果表明:地下水的存在能够减小最小支护力与上覆土压力的比值,有利于土体稳定;在最小支护力计算中需采用饱和砂土的有效内摩擦角,否则将降低开挖面安全系数。  相似文献   

20.
利用计算流体动力学软件 Star-CD,建立了列车通过隧道时的二维动网格模型,模拟在不同车速下,隧道内活塞风和压力场的动态变化规律,并比较不同外形和运行速度时列车所受到的空气阻力.模拟结果表明:列车通过隧道时的运行速度越大,产生的活塞风风速越大,相对压力越大,列车所受的空气阻力越大;列车通过隧道内某一测量点时,活塞风风速会发生突降,活塞风最大风速在列车尾流中形成;车头到达隧道入口时,最大压力突增,并很快达到最大值,随后逐渐减小;车尾到达隧道入口时,车尾最小压力突降;车身在隧道内时,车尾的最小压力波动较小;流线形列车所受的空气阻力约为钝形列车的0.5~0.7倍.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号