首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
为研究流道脊宽对梯形截面流道质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)性能的影响,通过流体动力学软件Fluent搭建PEMFC三维模型,分析单通道燃料电池宽度为2 mm,流道脊宽分别为0.6、0.8、1.4、1.6 mm时质子交换膜温度、阴极气体扩散层和催化层...  相似文献   

2.
建立了蛇形流场和点状流场的阴极三维数学模型,通过耦合求解质量守恒方程、动量守恒方程、Darcy方程和多组分气相扩散的Stefan—Maxwell方程,计算出两种不同流场阴极的催化层与扩散层交界面的O2和H2O浓度的分布、扩散层中间的气体速度分布.通过实验比较蛇形流场和点状流场的单电池性能.  相似文献   

3.
项目摘要:质子交换膜燃料电池在进入商业应用之前必须解决成本、寿命、可靠性和氢源等问题.其中提高放电性能是解决其它问题的前提,而阴极空气传递速度慢和氧气还原反应速度相对于阳极氢气氧化反应较低又是控制放电性能的关键.本项目采用碳包敷硬磁纳米材料为载体制备负载铂催化剂,把微磁场引入质子交换膜燃料电池阴极;  相似文献   

4.
质子交换膜燃料电池扩散层分形维数计算方法研究   总被引:1,自引:0,他引:1  
采集了一组放大倍数不同的质子交换膜燃料电池扩散层材料扫描电子显微镜图像,对5种数字图像分形维数计算方法进行研究,以期找出最佳的研究扩散层材料分形维数的计算方法.试验结果表明:盒维法最简单,物理意义明确,计算结果准确,计算时间短.因此采用盒维法测定扩散层分形维数最合适.  相似文献   

5.
质子交换膜燃料电池(PEMFC)的效率受燃料电池设计和操作条件等多种因素的影响.文中建立了能够计算PEMFC效率的单电池稳态模型,模型预测的极化曲线与实验结果吻合良好.利用该模型研究了电池工作温度和工作压力对电池效率的影响.计算结果表明,在电池工作温度范围内,提高电池工作温度,有利于提高电池效率,高电流密度电池效率增幅要大;提高阴极和阳极工作压力均有利于电池效率提高,但阴极的工作压力增加对提高电池效率作用明显.  相似文献   

6.
为深入理解同轴虚阴极振荡器的工作原理,结合同轴虚阴极振荡器的实验结果,通过理论和数值模拟分析了同轴虚阴极振荡器微波输出模式.分析结果与在远场条件下的通过实验获得的天线辐射方向图对比.研究结果表明,同轴虚阴极振荡器输出微波由TM01,模式和TE11模式共同组成,其中TM01模式所占比例约为66%~75%,TE11模式所占比例约为25%~34%.  相似文献   

7.
PEMFC交指型流道及扩散层的气场模拟和优化   总被引:1,自引:2,他引:1  
质子交换膜燃料电池的流道及扩散层对均匀化氧的分布起着非常重要的作用.模拟分析的结果表明增大流道深度有利于氧在扩散层表面的均匀化分布,扩散层和扩散亚层对氧浓度的均匀化分布取决于其对氧的横向扩散阻力和纵向扩散阻力的相对大小变化.  相似文献   

8.
固体氧化物燃料电池是一种高效洁净的新型电化学能源,具有很大的开发潜力.介绍了固体氧化物燃料电池的特点、新构造及电解质材料,阐述了固体氧化物燃料电池的研究趋势是发展新型材料和新型的制备技术,实现固体氧化物燃料电池的中温化和低成本.  相似文献   

9.
质子交换膜燃料电池(PEMFC)水管理是电池能否良好运行的关键.根据催化层微观结构模型,分析了其中电化学反应生成水的传递方式;又据催化层、扩散亚层和扩散层多孔介质材料的亲水性和憎水性,计算了多孔材料中孔径对饱和蒸汽压力的影响.认为电化学反应生成的水可能是气态也可能是液态;材料亲、憎水性和孔径对饱和蒸汽压力有巨大的影响.为了在PEMFC中更精确地构造反应物和生成物的流通通道,微观上研究水的相变和二相流是必须的,因此应构造新的相变和二相流模型.  相似文献   

10.
将具有全局搜索能力的遗传算法应用于质子交换膜燃料电池(PEMFC)扩散电极的性能优化,通过对PEMFC单体建立二维稳态数值计算模型,在ISIGHT-FD软件平台上利用径向基函数(RBF)神经网络拟和模型,在相应的设计空间内生成RBF拟和曲面,调用多岛遗传算法(MIGA)对RBF拟和进行遗传搜索,得到了阴极扩散层厚度、孔隙率和渗透率的最优值,通过优化前后的氧气浓度和输出性能比较,表明这些参数可改善气体扩散层的传质性能.  相似文献   

11.
质子交换膜燃料电池的性能   总被引:10,自引:0,他引:10  
以铂黑为电催化剂、Nafion117为电解质制备了膜&电极组件,分析了电极结构、电池结构和操作条件对质子交换膜燃料电池性能的影响.结果表明:催化层内的聚四氯乙烯(PTFE)和质子导体Nafion的含量都有一最佳值范围,过少不能提供足够的反应界面、气体通道和质子通道;过多则增大气体和质子传递阻力.提高温度和压力将改善电池内电化学反应和传质.良好的电池结构将有利于电池排水和减小接触电阻.  相似文献   

12.
以新型阻醇材料Na2Ti3O7/Nafion复合膜为质子交换膜,利用热压法制备膜电极(MEA),对直接甲醇单电池进行测试.考察了电池温度、阴极加湿温度、甲醇浓度、甲醇流速和空气流速5个参数对直接甲醇燃料电池极化曲线性能的影响.实验结果表明,电池温度对电池性能的影响较为明显,提高电池温度有利于得到较好的电池性能.甲醇浓度对电池性能影响也比较明显,较低甲醇浓度有利于提高电池性能.甲醇流速和空气流速对电池性能的影响较小,阴极加湿温度对电池性能几乎没有影响.通过分析优化,该直接甲醇燃料电池的电池性能最佳工作条件是在80℃情况下,低电流密度工作区采用较低浓度甲醇溶液,高电流密度工作区采用高浓度甲醇溶液.  相似文献   

13.
膜中水传输对质子交换膜燃料电池的性能具有极其重要的影响.文中建立了一个蛇形流场单电池的三维模型,研究了低电流密度下燃料电池运行温度、膜厚、过量系数、相对湿度、操作压力和电流密度等运行条件对膜中水含量的影响.计算结果表明:随着温度的升高,膜中的水含量先升高后降低;减小质子交换膜膜厚和过量系数.增大相对湿度、操作压力和电流密度.膜中的水含量增加.电导率就会增加,从而促进电池性能提高.  相似文献   

14.
质子交换膜燃料电池流场模拟与结构尺寸优化   总被引:1,自引:0,他引:1  
为了获得较优的流道深度、流道宽度和流道岸的宽度,采用计算流体动力学软件Fluent的PEM模块进行数值模拟和优化设计.研究表明,直流道流场的深度为0.4 mm时,电池性能最好,流道岸的宽度不要超过流道宽度,较优的流道宽度和流道岸的宽度比值为1:1和2:1.  相似文献   

15.
为了提高燃料电池机车的工作效率和动态性能,根据燃料电池机车热管理工作原理,利用物质守恒定律、热力学第一定理和相似原理,建立了包含散热器风机和冷却液循环泵的面向控制模型,研究了旁路阀门开度、冷却液循环泵电压和散热器风机电压对电堆温度、温度差以及系统效率的影响.研究结果表明:旁路阀可以局部调节电堆温度、温度差以及系统调节时间,但几乎不影响稳态效率;循环泵可以调节电堆的温度差,在保证温度差条件下,循环泵电压越小系统效率越高;散热器风机可以调节电堆温度和响应时间,电压越小系统效率越高.   相似文献   

16.
为了解决传统温度控制策略在质子交换膜燃料电池(proton exchange membrane fuel cell,PEMFC)电堆实际操作过程中存在的强耦合性,避免在电堆电流大幅加载时电堆内部出现短时高温,提出了一种基于电堆空气入口压力变化的改进温度控制策略.该策略以冷却水入口压力为调节目标,通过调节冷却水泵的转速控制冷却水流速,调节散热器风扇转速控制电堆冷却水入口温度.考虑电堆极板耐压的条件下,在自主搭建的多功能PEMFC测试平台上对传统控制策略与改进控制策略做了实验对比.结果表明,改进温度控制策略使冷却水入口温度最大超调量减小34.7%,冷却水出入口最大温度偏差减小17.8%,实现了较高的控制精度;电流从120 A降低到90 A时,调整时间最少缩短100 s,提高了系统的响应速度,满足燃料电池发电系统对温度控制的需求.   相似文献   

17.
为减小多堆燃料电池系统 (multi-stack fuel cell system, MFCS)中单体燃料电池运行期间输出功率的大范围变化,提高MFCS平均效率,以保证各燃料电池长期稳定运行,针对大功率质子交换膜燃料电池 (proton exchange membrane fuel cell,PEMFC)系统,提出了一种基于遗忘因子递推最小二乘 (forgetting factor recursive least square,FFRLS)在线辨识地改进链式功率分配方法. 该方法利用FFRLS算法的实时在线辨识能力估算运行中的每个燃料电池最大效率范围 (maximum efficiency range,MER),并将其边界值作为约束参考值实时更新链式功率的限定区间;然后,依据负载需求功率变化和各燃料电池效率高低顺序分配各电堆出力;最后,在搭建的RT-LAB半实物平台上进行试验分析. 试验结果表明:与平均功率分配和传统链式功率分配方法相比,本文所提方法对MFCS效率分别提高了0.93%和1.95%.   相似文献   

18.
基于电化学模型的PEM燃料电池建模与仿真   总被引:3,自引:1,他引:2  
基于PEM燃料电池的电化学模型.运用Matlab的Simulink仿真工具对系统进行建模及稳态、动态仿真分析.稳态分析主要研究了温度对电池电压和输出功率的影响;动态特性分析当电池电流突增和突降时,电池电压、输出功率、消耗功率、电池效率、电池等效内阻的动态响应.此模型也可用于电堆的仿真与设计,为燃料电池的优化与控制提供帮助.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号