首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 500 毫秒
1.
板式轨道动力响应分析方法   总被引:1,自引:0,他引:1  
为了计算在高速车辆移动荷载作用下板式轨道的动力响应,将轨道板视为线性粘弹性连续支承梁,将钢轨视为线性粘弹性点支承梁,将钢轨和轨道板统一划分为有限单元,基于车辆-轨道耦合动力学理论,利用弹性系统动力学总势能不变值原理,建立了高速列车-板式轨道的垂向耦合动力学方程,计算了车辆通过板式轨道钢轨焊接区短波不平顺时的轮轨动力学响应。仿真结果表明:与其他成熟仿真方法相比较,响应变化趋势与幅值基本一致,表明该方法可行。  相似文献   

2.
视车辆、轨道为整个系统,车辆模拟为由弹簧和阻尼器连接的多刚体,具有15个自由度,轨道模拟为两根离散粘弹性基础支承的长梁。运用弹性系统力学总势能不变值原理和形成矩阵的“对号入座”法则,建立车辆.轨道系统的运动方程。研究了左右钢轨不对称不平顺、左右钢轨的不对称支承、车辆移动速度以及钢轨类型对车辆一轨道系统响应的影响。  相似文献   

3.
客货共线条件下CRTS I型板式无砟轨道CA砂浆与轨道板普遍存在离缝,为了得到CA砂浆离缝高度对轨道结构动力响应的影响规律,基于车辆-轨道耦合动力学以及子结构模态叠加法,将ANSYS计算的轨道部件子结构的自振特性输入SIMPACK,使用力元连接轨道各部件形成轨道系统,通过轮轨接触面及柔性钢轨节点间的位移和力的数据传递,实现列车和轨道子系统的耦合,建立了含CA砂浆离缝的CRTS I型板式无砟轨道的垂向耦合模型,研究了客货混运条件下CA砂浆离缝高度对轨道结构动力响应的影响. 研究表明:随CA砂浆离缝高度增大,钢轨动态位移、轨道板振动响应及CA砂浆动应力均显著提高;当CRH380通过,板端离缝高度为1.0 mm和2.0 mm时,钢轨位移分别增大了0.24 mm和0.27 mm,轨道板在25 Hz处振级分别增大了21.0 dB和21.7 dB,离缝根部砂浆最大动应力均达到0.2 MPa,离缝高度超过1.0 mm后,离缝高度对轨道结构动力响应的影响趋于平缓;当SS7E通过,板端离缝高度为1.0 mm和2.0 mm时,钢轨位移分别增大了0.48 mm和0.66 mm,轨道板在8 Hz处振级分别增大了15.5 dB和19.4 dB,离缝根部砂浆动应力分别达到0.24 MPa和0.36 MPa,离缝高度超过1.0 mm后,离缝高度对轨道结构动力响应的影响仍有较大的增长.   相似文献   

4.
采用Tekscan压力测量系统现场测试了遂宁—重庆客货共线无砟轨道钢轨支点压力, 提出了高斯函数型钢轨支点压力时程表达式, 并通过现场实测数据对其进行验证; 根据钢轨支点压力时程表达式, 采用时序式加载法对轨道结构模型施加荷载, 并将其动力响应结果分别与车辆-轨道-路基垂向耦合振动模型的计算结果和现场实测结果进行对比。研究结果表明: 现场实测客货车对钢轨支点的最大压力分别为29.91和82.49 kN, 与中国铁道科学研究院测试结果的相对误差小于20%, 故Tekscan压力测量系统可精确测试钢轨支点压力; 高斯函数拟合所得客货车对钢轨支点压力的时程曲线与实测曲线的相关系数分别为0.962 7和0.966 7, 最大压力与现场实测值的相对差异分别为5.15%和0.46%, 最小压力与现场实测值的相对差异分别为7.23%和24.11%, 故采用高斯函数能较好地模拟客货车对钢轨支点压力的时程曲线, 且货车作用下钢轨支点压力时程的模拟精度略高于客车; 基于时序式加载法的荷载激励-轨道-路基模型计算结果与车辆-轨道-路基垂向耦合振动模型计算结果和现场测试结果相比, 轨道板最大位移相对差异分别为5.41%和2.70%, 底座板最大位移相对差异分别为2.86%和5.71%, 轨道板最大加速度相对差异分别为14.00%和23.20%, 底座板最大加速度相对差异分别为13.61%和8.73%。可见, 基于时序式加载法和高斯函数型钢轨支点压力时程表达式的荷载激励-轨道-路基模型可靠, 该方法无需建立车体模型, 既能保证计算效率, 又具有很高的精度。   相似文献   

5.
建立了移动列车荷载作用下点支承连续弹性粱的轨道结构垂向振动动力学分析模型.针对提速线路,采用动力有限元分析方法。分别讨论并比较了有无钢轨初始不平顺条件下,机车以不同行驶速度通过有刚度突变轨道地段时,轨道结构的动力响应规律.理论分析计算表明,线路初始不平顺和由轨枕失效、暗坑等造成的基础刚度的突变对整个轨道结构的动力响应有着显著影响.  相似文献   

6.
不同无砟轨道类型对车辆动力学特性影响的数值分析   总被引:1,自引:1,他引:0  
利用车辆-轨道耦合动力学理论,建立了不同类型无砟轨道垂向耦合动力学模型,分别计算了整体式无砟轨道、板式无砟轨道以及浮置板式无砟轨道在列车运行下的振动响应,分析比较系统振动响应受无砟轨道道床类型、车速、不平顺波深、扣件刚度和板下弹簧刚度的影响。结果表明,系统振动响应均随车速的提高而增大;车速、不平顺波深、扣件刚度和板下弹簧刚度对整体道床式无砟轨道系统振动响应影响最大,板式无砟轨道次之,对浮置板式无砟轨道系统振动响应影响最小;相对而言,浮置板式无砟轨道动力特性最好,其次为板式无砟轨道,整体式无砟轨道的动力特性最差。  相似文献   

7.
针对中国自主研发的CRTSⅢ型板式无砟轨道在运营阶段的受力变形问题, 以梁-板-轨相互作用原理为基础, 考虑钢轨、轨道板、自密实混凝土层及底座板等细部结构的空间尺寸与力学属性, 运用有限元法建立了高速铁路桥上CRTSⅢ型板式无砟轨道无缝线路精细化空间耦合模型; 计算了列车荷载作用下轨道及桥梁结构的挠曲力与位移, 分析了不同列车荷载作用长度、桥上扣件纵向阻力及墩台顶固定支座纵向刚度对挠曲力与位移的影响。研究结果表明: 在全桥加载情况下, 多跨简支梁桥上钢轨挠曲力在支座处表现为拉力, 跨中表现为压力, 大跨连续梁主桥上钢轨挠曲力在两侧边跨表现为拉力, 中间跨表现为压力, 单线加载时2种桥上有载侧钢轨挠曲力分别达到了38、53 kN, 约为双线加载时的1/2;轨道、桥梁结构纵向力与位移最大值不同时出现在同一工况下, 需要根据不同的检算部件选取最不利的列车荷载作用长度, 并将ZK活载中的集中力设置在跨中位置; 采用小阻力扣件可以改善钢轨受力与变形, 简支梁桥和连续梁桥上钢轨最大挠曲力分别减小了35%和22%, 钢轨纵向位移分别减小了7%和5%, 但轨板相对位移分别增大了26%和30%, 需加强观测以控制钢轨的爬行; 从轨道及桥梁结构的安全性与耐久性角度考虑, 建议将墩台顶纵向刚度控制在设计值的1.0~1.5倍范围内。   相似文献   

8.
为了降低高速铁路桥上结构的振动与噪声水平,以我国CRH2型高速车辆和32 m跨度高速铁路简支箱梁及CRTS I型板式无砟轨道为对象,建立高速车辆-无砟轨道-桥梁耦合振动分析模型,分析比较了不同行车速度下无砟轨道减振层刚度对车轨桥系统动力响应的影响,为桥上减振型板式轨道动力学参数设计提供参考。计算结果表明,桥上采用减振型板式轨道可显著降低轨道板垂向振动加速度,在本文计算条件下其最大加速度幅值较无减振层时减小了57%以上;减振型板式轨道能稍微降低轮轨动力作用,可减小简支箱梁垂向振动加速度20%左右;较低的减振层刚度增大了轨道板垂向振动位移,不利于高速行车安全,而过大的减振层刚度不能有效降低轨道结构振动,综合考虑后建议桥上减振型板式轨道弹性垫层刚度在100~200 MN/m3之间选取。  相似文献   

9.
在不间断行车情况下, 采用超高压水射流法对桥上CRTSⅡ型板式轨道底座板后浇带进行修复; 建立了CRTSⅡ型板式轨道结构静力计算模型, 分析了底座板后浇带不同脱空长度对钢轨、轨道板垂向位移与轨道板拉应力的影响; 建立了车辆-轨道耦合动力计算模型, 分析了底座板后浇带完全脱空长度为1.0 m时, 正常行车对轨道结构、行车安全与舒适性的影响。计算结果表明: 在1.5倍静轮载作用下, 随着后浇带脱空长度增大, 钢轨与轨道板垂向位移随之增大, 当底座板后浇带完全脱空长度为1.0 m时, 钢轨和轨道板的垂向位移均增大了0.03 mm, 说明完全脱空对其垂向位移影响较小; 后浇带脱空长度分别为0.7、0.8、0.9、1.0 m时, 轨道板的最大拉应力分别为0.96、1.12、1.18、1.22 MPa, 后浇带完全脱空时轨道板的最大拉应力小于其抗拉强度设计值1.96 MPa, 轨道板不会开裂; 列车运行速度为300 km·h-1, 后浇带完全脱空长度为1.0 m时, 钢轨和轨道板的最大垂向位移分别为0.91、0.32 mm, 均小于《高速铁路工程动态验收技术规范》 (TB 10761—2013) 中钢轨和轨道板垂向位移的基准值1.5、0.4 mm, 说明后浇带脱空后正常行车对轨道结构不会造成较大的影响; 后浇带完全脱空时, 轨道板垂向加速度约为正常时的3倍, 说明正常行车将会增大下部基础的振动强度。静、动力分析结果表明, 采用超高压水射流法修复底座板后浇带可允许列车以正常速度通行。   相似文献   

10.
以往高速铁路研究的轨下结构过于简化,且只考虑了轨下弹性垫板单一变量对轨道动力学的影响,而不能综合考虑刚度和阻尼参数对轨道结构动力学性能的影响.在车辆-轨道耦合系统动力学理论的基础上,运用动力学软件SIMPACK建立高速车辆-板式无砟轨道模型,通过对原有单层轨道拓扑优化后设置分层,分析轨下弹性垫板刚度和阻尼对板式无砟轨道结构动力学性能影响.研究结果表明:轨道结构细化分层分析与实际高速铁路板式轨道结构更加相符,能够更准确的反映轨道局部结构对轨道垂向动力学性能的影响;垫板老化后的刚度增大加剧轮轨相互作用,降低轨道垂向位移,减弱钢轨的振动,同时导致轨道板振动加强;垫板失效后的阻尼减小同样增强轮轨相互作用,使得轨道垂向位移和振动加速度增大;轨下垫板刚度的敏感参数顺序为轨道板垂向加速度、钢轨垂向加速度、轨道板垂向位移、钢轨垂向位移和轮轨力.  相似文献   

11.
高速铁路板式轨道的动力特性分析   总被引:3,自引:0,他引:3  
本文讨论了高速行车对板式轨道的动力响应间题。分析结果表明,高速行车时板式轨 道的竖直位移比低速行车时小,下沉的范围比低速行车时要广,最大下沉量偏向车轮 作用点后方.荷载频率越高,板式轨道的竖直位移越小,   相似文献   

12.
无碴轨道动力学理论及应用   总被引:2,自引:0,他引:2  
根据车辆-轨道耦合动力学理论,建立了列车与路基上无碴轨道空间耦合动力学模型.模型中将钢轨视为弹性点支承基础上的Bernoulli-Euler梁,将轨道板及混凝土底座视为弹性基础上的弹性薄板.推导了路基上无碴轨道的运动方程.用上述模型及方程分析了遂渝线无碴轨道综合试验段路基上板式轨道及过渡段的动力学性能.结果表明,快速客车、重载以及普通货车通过路基上板式轨道时,轮轨垂向力、轮轨横向力、脱轨系数、轮重减载率、以及CA砂浆和路基面动应力等动力学指标均小于许用值.该无碴(板式和双块式)轨道与有碴轨道过渡段在客运列车作用下钢轨挠度变化率均小于许用值(0.300mm/m),在货物列车作用下略大于许用值.  相似文献   

13.
针对桥墩温度梯度引起的桥上CRTSⅡ型板式无砟轨道纵向附加力与变形, 以梁-板-轨相互作用原理和有限元法为基础, 建立了多跨简支梁桥和大跨连续梁桥上CRTSⅡ型板式无砟轨道无缝线路空间耦合模型, 详细考虑了钢轨、轨道板、CA砂浆、底座板及桥梁等主要结构和细部结构的空间尺寸与力学属性; 采用单位荷载法计算了桥墩纵向温差作用引起的墩顶纵向位移, 分析了墩顶位移影响下桥上无砟轨道无缝线路纵向力与位移的分布规律。分析结果表明: 当各墩顶发生均匀位移时, 多跨简支梁桥和大跨连续梁桥上无砟轨道无缝线路纵向力分布规律及其最大值一致, 且随着墩顶均匀位移的增加而线性增大, 轨板相对位移峰值均出现在两侧桥台、台后锚固结构末端以及第2跨和最后一跨固定支座墩顶处; 当墩顶均匀位移为5 mm时, 多跨简支梁桥和大跨连续梁桥上钢轨最大纵向力分别为79.62和79.54 kN, 最大纵向位移分别为4.94和4.91 mm, 轨板最大相对位移均为0.23 mm; 当各墩顶发生不均匀位移时, 钢轨纵向力及轨板相对位移均在邻墩位移存在差异处发生突变, 多跨简支梁桥上固结机构纵向受力大于大跨连续梁桥; 对于高墩桥梁, 需重点关注相邻墩身高差最大处的轨板相对位移、底座板与桥梁相对位移及固结机构的纵向受力。   相似文献   

14.
为了优化坡道上钢弹簧浮置板轨道的设计, 在考虑轮轨纵向作用关系与钢弹簧浮置板轨道特点的基础上, 运用多体动力学理论和有限元法建立了紧急制动条件下地铁车辆与钢弹簧浮置板轨道动力相互作用模型, 利用多体动力学软件UM验证了模型的有效性, 分析了车辆与轨道的动力响应。研究结果表明: UM软件与本文模型计算得到的车体纵向加速度和轮轨纵向力平均相对误差分别为1.3%、2.8%;在紧急制动过程中, 车体始终处于向前点头和纵向振动的状态, 导致前轮增载, 后轮减载; 由于板与板之间不连续, 钢轨和浮置板之间会产生纵向相对错动, 须注意钢轨与浮置板之间不协调的纵向变形; 间隔2组扣件布置一对隔振器方案(方案1) 所得板端钢轨垂向位移比板中大0.2 mm, 间隔2组扣件布置一对隔振器, 再间隔3组扣件布置一对隔振器方案(方案2) 所得板端钢轨垂向位移比板中小0.5 mm; 2种布置方案下, 轨道纵向变形相差不超过5%, 扣件和钢弹簧受到的纵向作用力相差不超过15%;短波轨道不平顺显著加剧了钢轨和浮置板的垂向振动效应, 不平顺状态下钢轨最大垂向加速度可达15g左右; 钢弹簧浮置板轨道可以降低传递到基础底部的垂向振动, 加速度降幅约为0.2 m·s-2, 但会显著放大低频段钢轨、浮置板的垂向振动, 振动量增幅约为15 dB。   相似文献   

15.
运用有限单元法建模,分析扣件刚度对菱形交分道岔心轨和尖轨强度的影响以及沟槽开设方式对板下胶垫应力的影响,同时研究准静态轮载作用下轨道变形的合理性。结果表明,尖轨和心轨的强度及板下胶垫的强度均能够满足使用要求;菱形交分轨道刚度的均匀性能满足列车运行速度在120km/h及以下的使用要求。  相似文献   

16.
本文以包括钢轨、轨枕、道床在内的轨道作为双层结构模型。分析了轨道在移动简谐荷载作用下的动力响应,并与定点荷载作用的结果作了比较,指出了二者的差异,并建议在分析高速铁路轨道动力响应时考虑到车速度的影响,以及转向架邻轮和阻尼的作用。  相似文献   

17.
为了研究高速列车荷载作用下,Ⅰ型轨道板端部与CA砂浆层间的离缝现象对钢轨、轨道板及车辆的力学性能的影响,建立了车辆-Ⅰ型板式轨道垂向耦合动力学分析模型.以轮轨力、钢轨位移及加速度、轨道板位移,拉应力及加速度、车辆加速度为评价指标,分析了不同离缝长度和高度工况下上述指标的变化规律.研究结果表明:板端离缝长度越短,轨道板越容易脱空受力;轨道板脱空受力时的离缝高度等于该离缝长度下板的竖向最大位移;离缝长度及高度的变化对轨道结构及车辆的受力状态均有影响,但离缝长度的影响更大;长度不大于0.6 m的板端离缝主要使钢轨及轨道板的变形及受力状态恶化,长度大于0.6 m的板端离缝也会使车辆的振动加速度超过容许值.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号