首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为了探明流冰撞击桥墩对高速车辆-轨道-桥梁耦合系统动力学行为的影响,采用精细化有限元模型模拟了流冰撞击桥墩的过程,计算获得了不同冰排特性下流冰撞击力时程曲线,基于列车-轨道-桥梁动力相互作用理论,以流冰荷载作为外激励,建立了高速车辆-轨道-桥梁-冰击动力学分析模型。以5跨32 m简支梁为例,通过研究不同冰击荷载作用下桥梁结构的动力学响应,得到了对桥梁结构影响最大的冰击荷载,分析了在该冰击荷载作用下桥梁子系统和车辆子系统的动力学响应,最后探讨了冰击荷载对桥上列车走行性的影响。结果表明:在冰击荷载作用下,冰排厚度、流冰撞击速度和冰排抗压强度是影响桥梁动力学响应的关键参数,桥梁跨中和墩顶横向位移与加速度随冰排厚度和抗压强度的增加而增大,且随流冰撞击速度的增加呈先增大后减小趋势;流冰撞击桥墩对车辆-轨道-桥梁系统动力学响应影响显著,在冰击荷载作用下主梁横向位移和加速度增幅较大,跨中横向加速度主频与桥梁横向自振频率接近,表明流冰撞击可能会加剧桥梁横向自振频率附近的振动;车体横向振动加速度、脱轨系数、轮轨横向力和轮重减载率在流冰撞击作用下均明显增大,增幅超过2倍,可见流冰撞击对高速列车行车安全性和乘坐舒适性有较大影响。  相似文献   

2.
阻尼比是桥梁结构重要的自振特性参数,其机理复杂,无法通过结构理论计算确定,只能采用实测方法获取真值。波形分析法是结构动力学中常用的一种实测阻尼比的方法,一般采用动位移信号衰减曲线求解阻尼比。受当前测试仪器及现场条件的限制,一些大跨径桥梁很难找到不动点获取实用可靠的动位移信号,公路桥梁相关规范及工程实践中一般采用加速度信号代替动位移信号求解公路桥梁阻尼比,而采用加速度信号求解公路桥梁阻尼比是否客观准确,值得探讨。通过对某公路桥梁多组实测动位移、加速度信号采用波形分析法分别求取阻尼比,探讨实测阻尼比量值的随机性及两种信号求解结果的一致性。据此,得出了对工程实践有益的结论与建议。  相似文献   

3.
为研究风荷载下多线铁路桥双车交会的动力响应,以某六线双层铁路斜拉桥为背景,采用桥梁结构分析软件BANSYS建立有限元模型,对不同双车交会组合进行风-车-桥系统耦合振动分析,计算各工况下车辆和桥梁的动力响应,并研究双车交会横桥向间距、车桥相对位置和风速对车辆和桥梁动力响应的影响。结果表明:双车交会过程中,迎风侧车辆的加速度变化不明显,背风侧车辆的加速度明显变大;双车横桥向间距对背风侧车辆的横向加速度有不同程度的影响,竖向加速度有明显突变;横桥向间距对桥梁的横向位移略有影响,对竖向位移几乎无影响;双车横桥向间距相同时,靠近来流方向车道交会时车辆加速度比远离来流方向车道交会时大;迎风侧车辆的加速度随风速增大而增大;桥梁跨中横向位移随风速增大而变大,竖向位移和扭转角受风速的影响较小。  相似文献   

4.
针对中等跨径桥梁中的损伤识别不敏感问题,运用BP神经网络进行中等跨径桥梁结构损伤识别。利用MIDAS/Civil分别建立三跨连续变截面箱梁完好及不同损伤状态下有限元模型,分析桥梁不同状态下的特征值,发现中等跨径桥梁对结构损伤的敏感性依次为振型竖向位移固有频率;将参数化的结构固有频率及振型作为BP神经网络的输入、损伤位置和损伤程度作为输出进行神经网络训练,对各工况下损伤位置和损伤程度进行识别,发现识别效果较差,通过获取中等跨径桥梁的自身特性,利用BP神经网络难以识别结构损伤,需探索合适的损伤识别参数及适用于中等跨径桥梁的方法。  相似文献   

5.
常泰长江大桥为主跨1176 m的双塔双索面公铁两用双层斜拉桥.为研究侧风作用下该桥的动力响应以及桥上高速列车的行车安全性,采用WT TBDAS V2.0软件建立风-车-线-桥耦合分析模型,分析不同风速及车速下单、双线CRH2列车通过桥梁时车辆和桥梁的动力响应.结果表明:桥梁主跨跨中横向位移和横、竖向加速度随风速增大而增...  相似文献   

6.
为研究中小跨度钢混组合梁不同截面形式的受力性能以及经济性,以香海大桥组合梁为背景,建立工字钢-混凝土组合梁桥、钢箱-混凝土组合梁桥、钢桁架-混凝土组合梁桥等模型,分析不同跨径下三种不同截面形式的钢混组合梁桥受力性能及用钢量。结果表明,活载作用下,工字钢组合梁跨中竖向位移均大于钢箱梁及钢桁架组合梁,且随着跨径的增大,工字钢组合梁跨中竖向位移增长幅度越来越明显;偏载作用下,钢箱组合梁跨中最大位移均小于工字钢及钢桁架组合梁,且随着跨径的增大,钢箱组合梁跨中最大位移与其他两种方案的位移差逐渐增大;跨径35~55m范围内,工字钢组合梁的截面用钢量最低;跨径55~70m范围内,钢箱组合梁截面用钢量最低;70~100m跨径范围内,钢桁架组合梁的截面用钢量最低。  相似文献   

7.
为研究高速铁路桥梁竖弯涡振对桥上列车行车安全舒适性的影响,以某大跨公铁两用斜拉桥和CRH2型动车组为背景,进行风-车-轨-桥耦合系统振动分析。基于ANSYS与SIMPACK联合仿真平台,引入桥梁涡激力数值模型,建立风-车-轨-桥耦合系统振动模型,对比10 m/s平均风速下主梁发生与未发生竖弯涡振时桥梁和列车的动力响应,并分析不同列车速度的影响。结果表明:竖弯涡振会加剧桥梁和列车的竖向响应,而列车的存在会使发生竖弯涡振时的桥梁竖向位移和加速度分别降低31.8%和42.4%,对主梁竖弯涡振具有一定的抑制作用;主梁发生竖弯涡振时列车行车安全性指标峰值和竖向舒适性指标(竖向加速度和竖向Sperling指标)峰值明显大于未发生竖弯涡振时,并均随着车速的增大而增大;当车速超过230 km/h时,列车轮重减载率超过安全限值0.6,当车速超过200 km/h时,桥上列车竖向加速度超过安全限值1.3 m/s2。  相似文献   

8.
为研究波浪对跨海桥梁风车-桥耦合振动系统的影响,针对跨海桥梁所处风大、浪高的极端环境,建立了波浪-风-列车-桥梁动力模型,将风场视为空间相关的平稳高斯过程,高速列车采用质点-弹簧-阻尼器模型模拟,精细化全桥模型通过有限元方法建立,考虑风-列车-桥梁之间的耦合作用,波浪作为外部荷载施加到该耦合体系中。以主跨532 m某海洋桥梁为例,通过自主研发的桥梁科研软件BANSYS (Bridge Analysis System),分析了波高、风速、车速对耦合模型车辆和桥梁响应的影响。结果表明:风车-桥耦合振动体系的车辆和桥梁响应受波浪影响显著,车辆和桥梁响应在与波浪荷载一致的方向增加显著,15 m·s-1风速下,考虑波浪影响的车辆横向加速度最大值约是不考虑波浪时的1.3倍,考虑波浪影响的跨中横向位移最大值约是不考虑波浪时的22倍,而在非一致方向波浪对车-桥响应的影响较小;不同风速下,波浪对车辆横向加速度影响显著,考虑波浪影响的车辆横向加速度约是不考虑波浪时的1.2倍,而车辆竖向加速度、轮重加载率、倾覆系数等指标主要受风速的影响;波浪基频与桥梁横向位移响应谱主峰频率一致,波浪已成为影响桥梁横向位移响应的控制因素;波浪减弱了车速对车-桥响应的影响,随着波高的增加,车辆和桥梁响应对车速的变化更不敏感。  相似文献   

9.
本文以实际工程为背景,采用五跨等跨布置混凝土连续梁桥,截面为单箱双室结构,借助有限元软件Midas建立不同桥梁跨径、桥梁曲率半径、中墩支座偏心值来分析独柱墩桥梁抗倾覆能力及倾覆力学特征,得出上述影响因素对独柱墩横向稳定系数的影响规律。计算数据分析表明在相同条件下,曲线桥梁随着曲率半径的增大,抗倾覆稳定系数先减小后增大;稳定系数随着跨径的增大而增大;适当增加小半径曲线梁桥中墩支座偏心可以增强独柱墩桥梁横向稳定性。  相似文献   

10.
以某一大跨径预应力连续梁桥为对象,通过MIDAS/Civil建立桥梁悬臂施工阶段以及成桥阶段的结构模型,分析桥梁不同工况和不同施工荷载下的位移云图和应力云图,获得桥梁变形特征和应力特征。研究结果表明:悬臂施工段,悬臂端自重横载作用和张拉预应力作用下产生最大累计位移由悬臂根部逐渐增大;由于最大位移相反,因此预应力累计位移能够较好的抵消恒载位移影响;悬臂阶段,主梁最大应力出现在墩梁固结处,主梁应力由墩体位置向合拢段逐渐减小,在合拢处取得最小值;成桥阶段主梁合拢段产生最大应力,由合拢区向墩梁固结处应力逐渐减小,在墩梁处取得最小应力,位移量由合拢处向左右两侧块逐渐增大;中跨合拢60 d后桥面铺装时,最大位移量出现在中跨合拢段;桥梁投运3 a后主梁整体位移表现出不确定性,各块均表现出不同程度的增大或减小。  相似文献   

11.
针对某在建150 m跨径钢筋混凝土箱形拱桥,采用开发的基于ANSYS的大跨桥梁抗震分析计算模块进行地震加速度时程响应分析。选用天津波和EL-Centro波两种加速度时程曲线,采用一致激励和行波激励分别进行地震时程响应分析。结果表明:与一致激励相比,考虑行波效应时,拱脚弯矩、l/4截面轴力和弯矩均有显著增大,拱脚轴力、拱顶轴力和弯矩则有所减小;各部位的顺桥向位移均增加。开发的抗震分析模块应用于实际工程中效果较好。  相似文献   

12.
为探究列车在不同车速以及空载、满载情况下通过“桥建合一”型车站时所引起的结构振动问题,以某“桥建合一”高架越行车站为例,建立车-轨道-车站的有限元结构耦合动力分析模型,分析B型车在80~120 km/h速度下作用于站房结构及结构反作用于列车的动力响应结果,并进行舒适度评价。结果表明:当B型车以80~120 km/h通过该车站时,列车竖、横向振动加速度以及列车的乘坐舒适性均满足相关规范限值要求;承轨层竖向响应均大于横向响应,且竖向位移和竖向加速度随着车速的增加变化较小,横向位移和横向加速度随着车速的增加呈现先增大后减小的趋势;候车厅楼板的最大竖向响应均大于其横向响应,最大横向位移随着车速的增大呈现先增大后减小的趋势,最大横、竖向加速度均随着车速的增加呈现变大的趋势。通过理论计算结果与“桥建合一”车站现场实测数据的比对,验证了空间耦合振动有限元模拟计算的可靠性,可为同类高架车站结构的计算与分析提供参考。  相似文献   

13.
车桥耦合作用下,钢-混凝土组合梁桥竖向振动问题比较突出,这将影响行人的安全及舒适性。以中国某三跨双工字钢-混凝土组合连续梁桥为研究对象,对桥梁进行车桥耦合振动分析及控制。基于Newmark-β法在ANSYS中利用APDL语言建立车桥耦合振动模型,并对不同车重、车速和路面等级下的桥梁竖向加速度振动响应进行分析。在桥梁各跨跨中安装调谐质量阻尼器(TMD)对桥梁振动进行控制,采用最佳参数调整方法确定TMD参数。对安装TMD前后的桥梁振动响应进行对比分析,并结合Sperling指标对行人舒适度进行评价。研究结果表明:车速、车重和路面等级均是导致行人舒适度变差的重要因素;2辆同型号车辆按相应车道并排行驶,安装TMD后,随着车速的增大,桥梁跨中竖向加速度峰值减小率逐渐增大,当车速为120 km·h-1时,桥梁跨中竖向加速度峰值减小率达到43.7%,Sperling指标从2.76降到2.33,振动控制效果最为明显;随着车重的增加,桥梁跨中竖向加速度峰值减小率基本呈增大趋势,当各车重为40 t时,桥梁跨中竖向加速度峰值减小率为29.1%,Sperling指标从2.20减小到1.99,行人舒适度得到了较大改善;随着路面不平顺等级的增大,桥梁跨中竖向加速度峰值减小率也逐渐增大,C级路面时加速度峰值减小率可达到29.4%,控制效果明显。因此,安装TMD对不同车重、车速和路面等级下的桥梁跨中竖向加速度响应均起到了控制作用,对双工字钢-混凝土组合连续梁桥安装TMD可以有效地改善行人舒适度。  相似文献   

14.
厦深铁路榕江特大桥主桥为(110+2×220+110)m下承式大跨度刚性桁梁柔性拱组合体系桥。为了解其在设计时速下车-桥系统的动力性能,基于ANSYS软件建立全桥有限元模型,分析其自振特性,采用SIMPACK和ANSYS联合数值仿真分析方法,计算CRH2动车组列车运行时桥梁和列车组的动力响应,并与现场实测值和规范限值进行对比,评价该桥在列车设计时速下车-桥系统的安全性和舒适性。结果表明:双线行车可有效减小桥梁跨中的横向振动,但对列车响应的影响很小;车速250km/h时桥梁各动力响应值均大于车速220km/h时的值,且均满足规范限值;在各工况下,列车组的车辆脱轨系数、轮重减载率、轮轴横向力和车体加速度均小于标准限值,舒适性指标均为优或良,列车运行安全性和舒适性满足规范要求。  相似文献   

15.
《公路》2020,(1)
依托城市轨道桥梁中一座三跨预应力混凝土连续梁桥开展实桥动力学试验,测试得到跨中动挠度时程曲线,建立了轨道列车-桥梁耦合有限元模型,通过与实测数据对比,验证了有限元模型的有效性。基于车桥耦合有限元模型,开展考虑轨道不平整度及桥梁跨径的双参数影响下冲击系数研究,分析后发现:实际测量得到的冲击系数较我国铁路规范值偏大;不平整度及桥梁跨径对桥梁结构的冲击系数影响明显,考虑不平整度影响后,冲击系数取值较我国现行铁路规范中规定值偏大;同一跨径下不平整度等级越差,冲击系数取值也越大。  相似文献   

16.
《中外公路》2021,41(4):157-163
随着健康监测系统在大跨径桥梁管养中的实践和经验积累,一些中小跨混凝土梁桥也逐步安装健康监测系统来掌握桥梁的运营状态。现有健康监测相关技术标准和规范主要用于指导大跨径桥梁,与中小跨桥梁结构的受力特点存在一定的差异。该文建立了大量具有代表意义的中小跨混凝土梁桥和典型大跨径连续刚构桥计算模型,对比分析了两者在恒活载比例、超重载荷影响、健康监测方法和监测参数4个方面的差异,得到以下结论:与大跨径桥梁相比,中小跨混凝土梁桥活载比例明显较大,可达到恒活载总和的50%左右;中小跨混凝土梁桥和大跨径连续体系桥梁的影响线长度及方向差异较大,中小跨混凝土梁桥需特别关注超重载荷的影响;中小跨混凝土梁桥活载及温度等变形较小,但应力响应量值显著,是健康监测的重点参数。  相似文献   

17.
为研究移动车辆荷载作用下车辆-桥梁系统的动力响应特性,以某三跨高墩连续刚构桥为对象,采用2轴7自由度车辆模型加载,探究车辆速度、行车数量及车辆载重因素对车桥系统动力响应的影响。结果表明:车辆的行驶速度基本不会影响桥梁的位移响应峰值,车辆以相同速度通过桥梁时,桥梁各跨的位移响应峰值存在差异,车桥发生共振时的车速为40 km/h;随着行车数量的增加,桥梁各跨跨中处于较大位移响应的持续时间明显加长,桥梁中跨跨中的位移响应峰值在2辆车行驶时取得极大值,而车辆的加速度峰值与加权加速度均方根值在6辆车通过桥梁时取得极大值;随着车辆载重的增加,桥梁的位移及加速度响应总体呈增长趋势,而桥梁的冲击系数与车辆各项动力指标的响应则呈下降趋势。  相似文献   

18.
为研究城际铁路减振型双块式无砟轨道的合理刚度匹配,基于轮轨系统耦合动力学理论,结合我国城际铁路的运营特点,建立了城际铁路车辆-减振型双块式无砟轨道耦合动力分析模型,分析了列车在时速200 km和160 km时的轮轨动力响应。结果表明:对列车最高运行速度为200 km/h的城际客运专线,建议钢轨允许垂向位移控制在2 mm以内,减振垫的垂向位移应控制在1 mm左右;支点反力、钢轨位移受扣件刚度的影响显著,减振垫刚度是决定底座板加速度及道床板位移的决定性因素。城际铁路“在大站停”列车时速200 km、“站站停”列车最高时速160 km时,扣件合理刚度可取为42~49 kN/mm,减振垫的合理刚度可取为0.036~0.044 N/mm3。  相似文献   

19.
把车辆和桥梁结构看成相互作用的两个子系统,分别建立二者的力学模型和振动微分方程。在求解过程中,通过位移协调条件和两个子系统间相互作用力相等的原则把两个子系统的振动微分方程耦合起来。利用有限元分析软件ANYSYS的二次开发语言APDL编写了求解车桥系统耦合振动微分方程的迭代计算命令流。以桥面不平顺为激振源,分析了主跨为550 m的福建长门大桥当多车辆通过时在各级桥面不平顺情况下的动力响应。计算结果表明,随着桥面不平顺程度的增加,桥梁结构和车体的动力响应均呈非线性增大,其中桥梁主跨跨中位移、主跨最外侧拉索应力和车辆加速度变化显著。  相似文献   

20.
为了研究沈阳市三好桥(公路钢拱塔斜拉桥)在汽车荷载作用下的动态响应,通过测试得到不同速度的车辆通过时桥梁的竖向振幅和冲击系数,通过数值分析得到不同阻尼桥梁相应的动态响应和动力放大系数。分析结果表明:桥面平整的桥梁可采用数值方法计算桥梁的动态响应及其动力放大系数;主梁的位移和弯矩的冲击系数与车速呈波动变化,塔根弯矩的冲击系数、斜拉索和水平索最大索力和应力幅的冲击系数随着车速的增大而增大;不考虑阻尼时,桥梁各响应量的冲击系数的值偏大;考虑阻尼比时,各响应量的冲击系数随着桥梁阻尼比的增大而减小;阻尼比较小的桥梁,阻尼比对其动力响应影响较小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号