共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
汝郴高速公路赤石特大桥为四塔双索面预应力混凝土斜拉桥,跨径为(165+3×380+165) m,最高主塔286.63 m,最重梁段1~#块方量达269.2 m3,主梁与地面高差约185 m。大桥主梁采用多约束条件下0~#块施工技术、7 600 kN承载力超大前支点挂篮施工、边跨无约束合龙技术、中跨次中跨顶推合龙技术、竖直下拉索+TMD主梁抗风研究5个关键技术,解决了大桥超高超重预应力混凝土主梁施工技术难题,可为同类型斜拉桥主梁施工提供参考。 相似文献
5.
预应力混凝土斜拉桥主梁悬拼施工技术 总被引:1,自引:0,他引:1
宜昌夷陵长沙大桥主桥为单索面预应力混凝土加颈梁三塔斜拉桥,以该桥施工实践为背景,介绍预应力混凝土斜拉桥主梁匹配预制,悬臂拼装等施工技术。 相似文献
6.
7.
8.
9.
10.
11.
12.
13.
上部结构的长期变形是影响大跨度预应力混凝土连续刚构桥使用安全的主要因素之一。以主跨为2×185m的铁路连续刚构桥为例,通过对加载龄期、预应力设计、环境相对湿度等因素的比较计算,对大跨度预应力混凝土连续刚构桥上部结构的变形控制问题进行了研究。 相似文献
14.
斜拉桥运营监测主要集中在主梁及拉索等监测上,分别采用连通管和加速度仪等成熟设备,而对主塔变形监测的研究较少。某跨越富春江的中央索面斜拉桥主跨径256m,成桥后安装了监测系统,包含监测主梁变形的连通管传感器、监测桥塔变形的GNSS传感器和倾角传感器。其中为了优化传感器布局,采用了平面正三角形布局。本研究基于GNSS技术对某已建成运营5年的斜拉桥主塔变形进行了实时监测,分别从不同的时间尺度研究了温度和车辆荷载对其变形影响,比较了理论分析结果和实测结果。经过将近1年的监测表明,对于中小跨径的斜拉桥,主塔刚度的贡献不容忽视,其变形监测在结构运营监测中不可或缺。 相似文献
15.
该文考虑荷载横向分布系数沿跨度的变化,用解析法建立了简支梁桥主梁由车道荷载图式中的集中荷载产生的支点截面最大剪力实用计算公式,避免了通过试算求最大剪力时的麻烦,详细论述了各种情况下主梁支点截面最大剪力的计算方法。同时对车道荷载中的均布荷载产生的支点剪力,也导出了具体计算公式,以便实际应用。最后通过三个算例,详细说明了公式在各种情况下的应用。 相似文献
16.
17.
海尔格兰桥是一座主跨425m纤细的预应力混凝土斜拉桥,梁采用空气动力学造型,结构高达1.20m,宽20m,两个桥塔的基础建立在30m的深水中,桥梁按风速77m/s的强风暴设计,为了设计这个起决定作用的风荷载对断裂状态作了“历时”试验,试验考虑了空气动力阻尼以及几何形状和材料技术的非线性性能,桥梁采用了从桥塔向两边悬臂浇灌法施工,该桥工期为两年,于1991年7月开通投入运行。 相似文献
18.
19.
20.
基于超高性能混凝土(UHPC)的优异性能及其在混凝土结构抗弯加固中的应用成果,提出了采用配筋UHPC加固受损混凝土斜拉桥主梁的方法,由此开展了UHPC加固受损严重主梁的混凝土斜拉桥节段模型试验研究,以探究主梁加固后斜拉桥体系的受力性能。试验结果表明:UHPC加固混凝土斜拉桥主梁施工方式整体协同工作性能良好,UHPC层与原混凝土间未发生脱黏破坏;UHPC加固后,主梁开裂荷载较原未损伤主梁提升了79.9%,且UHPC层裂缝呈现数量多、间隙小及宽度细的特征,并可有效抑制原主梁裂缝发展,说明受拉UHPC层显著提高了加固后主梁的抗裂性能;不同主梁裂缝宽度工况荷载作用下,斜拉桥体系变形恢复较好,残余变形很小,且当主梁出现严重损伤时,该体系仍具有很好的受力性能;UHPC加固后,主梁的抗弯强度有一定程度提高,但不控制斜拉桥体系的极限承载力,主梁破坏时斜拉索应力为其极限强度的70.2%,斜拉索仍然具有一定承载力富余;UHPC加固后,主梁严重受损的斜拉桥体系刚度得到有效提升,主梁开裂前体系刚度较未损伤原主梁及灌浆加固后主梁分别提升了11.3%和29.5%;采用UHPC对混凝土斜拉桥主梁进行抗弯加固具有较大... 相似文献