首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper employs a pseudo-panel approach to study vehicle ownership evolution in Montreal region, Canada using cross-sectional origin–destination survey datasets of 1998, 2003 and 2008. Econometric modeling approaches that simultaneously accommodate the influence of observed and unobserved attributes on the vehicle ownership decision framework are implemented. Specifically, we estimate generalized versions of the ordered response model—including the generalized, scaled- and mixed-generalized ordered logit models. Socio-demographic variables that impact household’s decision to own multiple cars include number of full and part-time working adults, license holders, middle aged adults, retirees, male householders, and presence of children. Increased number of bus stops, longer bus and metro lengths within the household residential location buffer area decrease vehicle fleet size of households. The observed results also varied across years as manifested by the significance of the interaction terms of some of the variables with the time elapsed since 1998 variable. Moreover, variation due to unobserved factors are captured for part-time working adults, number of bus stops, and length of metro lines. In terms of the effect of location of households, we found that some neighborhoods exhibited distinct car ownership temporal dynamics over the years.  相似文献   

2.
This study analyzes particle number and mass emission rates measured from the exhaust of a 2002 diesel transit bus in real-world driving conditions. The dynamics of the particle number and mass emission rates are examined at resolved temporal and spatial scales across an urban arterial, a rural arterial and a divided freeway. Time-based particle number and mass emission rates were highest on the freeway, but the distance-based particle emission rates of emission/km at “hot-spots” for exposure assessment for selected 50-m road segments occurred at intersections when the bus accelerated from a stop or traveled up high grades. Comparisons of particle mass and number emission rates between idling and acceleration indicate that unless the bus is extending idling for several minutes, public exposure to bus particle emissions near bus stops can be mainly attributed to accelerations. Generally, particle number and mass emissions rates are highly correlated both temporally and spatially. Some deviations occur because particle mass emissions are highly elevated during sustained fueling events such as traveling on high grades and during sustained accelerations, while particle number emissions are more sensitive to fuel and engine speed fluctuations.  相似文献   

3.
Most previous works associated with transit signal priority merely focus on the optimization of signal timings, ignoring both bus speed and dwell time at bus stops. This paper presents a novel approach to optimize the holding time at bus stops, signal timings, and bus speed to provide priority to buses at isolated intersections. The objective of the proposed model is to minimize the weighted average vehicle delays of the intersection, which includes both bus delay and impact on nearby intersection traffic, ensuring that buses clear these intersections without being stopped by a red light. A set of formulations are developed to explicitly capture the interaction between bus speed, bus holding time, and transit priority signal timings. Experimental analysis is used to show that the proposed model has minimal negative impacts on general traffic and outperforms the no priority, signal priority only, and signal priority with holding control strategies (no bus speed adjustment) in terms of reducing average bus delays and stops. A sensitivity analysis further demonstrates the potential of the proposed approach to be applied to bus priority control systems in real‐time under different traffic demands, bus stop locations, and maximum speed limits. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
A mathematical model is developed to optimize social and fiscal sustainable operation of a feeder bus system considering realistic network and heterogeneous demand. The objective total profit is a nonlinear, mixed integer function, which is maximized by optimizing the number of stops, headway, and fare. The stops are located which maximize the ridership. The demand elasticity for the bus service is dependent on passengers' access distance, wait time, in‐vehicle time, and fare. An optimization algorithm is developed to search for the optimal solution that maximizes the profit. The modeling approach is applied to planning a bus transit system within Woodbridge, New Jersey. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Bus stops are integral elements of a transit system and as such, their efficient inspection and maintenance is required, for proper and attractive transit operations. Nevertheless, spatial dispersion and the extensive number of bus stops, even for mid-size transit systems, complicates scheduling of inspection and maintenance tasks. In this context, the problem of scheduling transit stop inspection and maintenance activities (TSIMP) by a two-stage optimization approach, is formulated and discussed. In particular, the first stage involves districting of the bus stop locations into areas of responsibility for different inspection and maintenance crews (IMCs), while in the second stage, determination of the sequence of bus stops to be visited by an IMC is modelled as a vehicle routing problem. Given the complexity of proposed optimization models, advanced versions of different metaheuristic algorithms (Harmony Search and Ant Colony Optimization) are exploited and assessed as possible options for solving these models. Furthermore, two variants of ACO are implemented herein; one implemented into a CPU parallel computing environment along with an accelerated one by means of general-purpose graphics processing unit (GPGPU) computing. The model and algorithms are applied to the Athens (Greece) bus system, whose extensive number of transit stops (over 7500) offers a real-world test bed for assessing the potential of the proposed modelling approach and solution algorithms. As it was shown for the test example examined, both algorithms managed to achieve optimized solutions for the problem at hand while there were fund robust with respect to their algorithmic parameters. Furthermore, the use of graphics processing units (GPU) managed to reduce of computational time required.  相似文献   

6.
This paper assesses alternative fuel options for transit buses. We consider the following options for a 40-foot and a 60-foot transit bus: a conventional bus powered by either diesel or a biodiesel blend (B20 or B100), a diesel hybrid-electric bus, a sparking-ignition bus powered by Compressed Natural Gas (CNG) or Liquefied Natural Gas (LNG), and a battery electric bus (BEB) (rapid or slow charging). We estimate life cycle ownership costs (for buses and infrastructure) and environmental externalities caused by greenhouse gases (GHGs) and criteria air pollutants (CAPs) emitted from the life cycle of bus operations. We find that all alternative fuel options lead to higher life cycle ownership and external costs than conventional diesel. When external funding is available to pay for 80% of vehicle purchase expenditures (which is usually the case for U.S. transit agencies), BEBs yield large reductions (17–23%) in terms of ownership and external costs compared to diesel. Furthermore, BEBs’ advantages are robust to changes in operation and economic assumptions when external funding is available. BEBs are able to reduce CAP emissions significantly in Pittsburgh’s hotspot areas, where existing bus fleets contribute to 1% of particulate matter emissions from mobile sources. We recognize that there are still practical barriers for BEBs, e.g. range limits, land to build the charging infrastructure, and coordination with utilities. However, favorable trends such as better battery performance and economics, cleaner electricity grid, improved technology maturity, and accumulated operation experience may favor use of BEBs where feasible.  相似文献   

7.

Bus riders utilize a variety of information media to learn how to travel to their destinations and to learn when they should arrive at bus stops. As part of the OCTA (Orange County Transit Authority) Transit Probe evaluation, 1199 passengers were surveyed to measure relationships between information acquisition and waiting time. A unique aspect of the survey was that some of the data could be correlated with automatic‐vehicle‐location (AVL) measurements of bus lateness at stops. Insights are provided as to the types of information riders acquire based on the nature of the trip and demographic characteristics. Insights are also provided as to factors affecting perceived waiting time. We found age group, whether a person needs to arrive at a destination by a specific time, primary language, and whether the person is a first‐time user of the bus line to be significant causal factors.  相似文献   

8.
This paper proposes a new dynamic bus control strategy aimed at reducing the negative effects of time-headway variations on route performance, based on real-time bus tracking data at stops. In routes with high demand, any delay of a single vehicle ends up causing an unstable motion of buses and producing the bus bunching phenomena. This strategy controls the cruising speed of buses and considers the extension of the green phase of traffic lights at intersections, when a bus is significantly delayed. The performance of this strategy will be compared to the current static operation technique based on the provision of slack times at holding points. An operational model is presented in order to estimate the effects of each controlling strategy, taking into account the vehicle capacity constraint. Control strategies are assessed in terms of passenger total travel time, operating cost as well as on the coefficient of headway variation. The effects of controlling strategies are tested in an idealized bus route under different operational settings and in the bus route of highest demand in Barcelona by simulation. The results show that the proposed dynamic controlling strategy reduces total system cost (user and agency) by 15–40% as well as the coefficient of headway variation 53–78% regarding the uncontrolled case, providing a bus performance similar to the expected when time disturbance is not presented.  相似文献   

9.
On the capacity of isolated, curbside bus stops   总被引:2,自引:0,他引:2  
The maximal rates that buses can discharge from bus stops are examined. Models were developed to estimate these capacities for curbside stops that are isolated from the effects of traffic signals. The models account for key features of the stops, including their target service levels assigned to them by a transit agency. Among other things, the models predict that adding bus berths to a stop can sometimes return disproportionally high gains in capacity. This and other of our findings are at odds with information furnished in professional handbooks.  相似文献   

10.
In this paper, we propose an agent-based simulation approach that is capable of simulating the flow of passengers on board buses and at bus stops. The intention is that it will be applied during vehicle development to analyze how vehicle design affects passenger flow, and thus also how it affects system performance such as dwell time. In turn, this could aid the developers in making design decisions early in the development process. Besides introducing the simulation tool itself, the paper explores the realism of the data generated by the tool. A number of passenger flow experiments featuring a full-scale bus mockup and 50 participants were carried out. The setup of these experiments mirrored a number of ‘bus journeys’ (regarding vehicle design, number of passengers boarding/alighting at each stop and so on) that had previously been simulated using the simulation tool. When the data from the simulations were compared with the data from the passenger flow experiments, it could be concluded that the tool is indeed able to generate realistic passenger flows, although with some errors when a large number of passengers board/alight. The simulated dwell times were rationally affected by the tested bus layout aspects. It was concluded that the tool makes it possible to evaluate how variations in bus layouts affect passenger flow, providing data of sufficiently high quality to be useful in early phases of vehicle design.  相似文献   

11.
Although real-time Automatic Vehicle Location (AVL) data is being utilised successfully in the UK, little notice has been given to the benefits of historical (non-real-time) AVL data. This paper illustrates how historical AVL data can be used to identify segments of a bus route which would benefit most from bus priority measures and to improve scheduling by highlighting locations at which the greatest deviation from schedule occurs. A new methodology which uses historical AVL data and on-bus passenger counts to calculate the passenger arrival rate at stops along a bus route has been used to estimate annual patronage and the speed of buses as they move between stops. Estimating the patronage at stops using AVL data is more cost-effective than conventional methods (such as surveys at stops which require much more manpower) but retains the benefits of accuracy and stop-specific estimates of annual patronage. The passenger arrival rate can then be used to calculate how long buses spend at stops. If the time buses spend at stops is removed from the total time it takes the bus to traverse a link, the remaining amount of time can be assumed to be the time the bus spends moving and hence the moving speed of the bus can be obtained. It was found that estimation of patronage and the speed of buses as they move between stops using AVL data produced results which were comparable with those obtained by other methods. However the main point to note is that this new method of estimating patronage has the potential to provide a larger and superior data set than is otherwise available, at very low cost.  相似文献   

12.
In suburban areas, combining the use of electric vehicles (EV) and transit systems in an EV Park-Charge-Ride (PCR) approach can potentially help improve transit accessibility, facilitate EV charging and adoption, and reduce the need for long-distance driving and ensuing impacts. Despite the anticipated growth of EV adoption and charging demand, PCR programs are limited. With a focus on multi-modal trips, this study proposes a generic planning process that integrates EV infrastructure development with transit systems, develops a systematic assessment approach to fostering the PCR adoption, and illustrates a case implementation in Chicago. Specifically, this study develops a Suitability Index (SI) for EV charging locations at parking spots that are suitable for both EV charging and transit connections. SI can be customized for short-term and long-term planning scenarios. SI values are derived in Chicago as an example for (1) commuter rail stations (for work trips), and (2) shopping centers near transit stops as potential opportunities for additional weekday parking and EV charging (for multi-purpose trips/MPT). Furthermore, carbon emissions and vehicle miles travelled (VMT) across various travel modes and trip scenarios (i.e., work trips and MPT) are calculated. Compared to the baseline of driving a conventional vehicle, this study found that an EV PCR commuter can reduce up to 87% of personal VMT and 52% of carbon emissions. A more active role of the public sector in the PCR program development is recommended.  相似文献   

13.
Attitudes towards the environment and knowledge of the polluting effects of vehicle emissions were surveyed in 566 train and bus commuters, private motor vehicle commuters and smoky vehicle commuters. Environmental concern was found to significantly correlate with level of contribution to an environmental organisation but not with levels of environmental attitudes or emissions knowledge. Smoky vehicle drivers did not have lower levels of knowledge of emissions or lower levels of environmental concern compared to other private motor vehicle commuters. Train commuters showed no greater concern for the environment than car commuters.  相似文献   

14.
In this study, we develop a Passenger Car Emission Unit (PCEU) framework for estimating traffic emissions. The idea is analogous to the use of Passenger Car Unit (PCU) for modeling the congestion effect of different vehicle types. In this approach, we integrate emission modeling and cost evaluation. Different emissions, typically speed-dependent, are integrated as an overall cost via their corresponding external costs. We then develop a normalization procedure to obtain a general trend that is applicable for all vehicle types, which is used to derive a standard cost curve. Different vehicle types with different emission standards are then mapped to this standard cost curve through their corresponding PCEUs that are to be calibrated. Once the standard cost curve and PCEUs have been calibrated, to estimate the overall cost of emission for a particular vehicle, we only need to multiply the corresponding PCEU of that vehicle type to the standard cost curve. We apply this PCEU approach to Hong Kong and obtain promising results. Compared with the results obtained by the full-blown emission model COPERT, the approach achieves high accuracy but obviates tedious inputs typically required for emission estimation.  相似文献   

15.
This study reports bus passengers' behavior and perceptions related to the use of potential features of an automatic vehicle location (AVL) system in bus transit through conducting an attitudinal on‐board survey in Bangkok. A passenger waiting‐time survey conducted as part of this study revealed that passengers perceive waiting‐time at bus stops to be greater than actually experienced. The other aim of this study is to examine the potential benefits of bus‐holding using an AVL technology, in terms of waiting‐time, through minimizing bus bunching under different congestion levels. The results are obtained using PARAMICS, and reveal a significant reduction in average waiting‐time.  相似文献   

16.
This paper develops an application-oriented model to estimate waiting times as a function of bus departure time intervals. Bus stops are classified into Type A and B depending on whether they are connected with urban rail transit systems. Distributions of passenger arrival rates are analyzed based on field data for Beijing. The results indicate that the best fits for the distribution of passenger arrival rates for Type A and B bus stops are the lognormal distribution and gamma distribution, respectively. By analyzing relationships between passenger arrival rates and bus departure time intervals, it is demonstrated that parameters of the passenger arrival rate distribution can be expressed by the average and coefficient of variation of bus departure time intervals in functional relationships. The validation shows that the model provides a reliable estimation of the average passenger waiting time based on readily available bus departure time intervals.  相似文献   

17.
Transit agencies often provide travelers with point estimates of bus travel times to downstream stops to improve the perceived reliability of bus transit systems. Prediction models that can estimate both point estimates and the level of uncertainty associated with these estimates (e.g., travel time variance) might help to further improve reliability by tempering user expectations. In this paper, accelerated failure time survival models are proposed to provide such simultaneous predictions. Data from a headway-based bus route serving the Pennsylvania State University-University Park campus were used to estimate bus travel times using the proposed survival model and traditional linear regression frameworks for comparison. Overall, the accuracy of point estimates from the two approaches, measured using the root-mean-squared errors (RMSEs) and mean absolute errors (MAEs), was similar. This suggests that both methods predict travel times equally well. However, the survival models were found to more accurately describe the uncertainty associated with the predictions. Furthermore, survival model estimates were found to have smaller uncertainties on average, especially when predicted travel times were small. Tests for transferability over time suggested that the models did not over-fit the dataset and validated the predictive ability of models established with historical data. Overall, the survival model approach appears to be a promising method to predict both expected bus travel times and the uncertainty associated with these travel times.  相似文献   

18.
A significant proportion of bus travel time is contributed by dwell time for passenger boarding and alighting. More accurate estimation of bus dwell time (BDT) can enhance efficiency and reliability of public transportation system. Regression and probabilistic models are commonly used in literatures where a set of independent variables are used to define the statistical relationship between BDT and its contributing factors. However, due to technical and monetary constraints, it is not always feasible to collect all the data required for the models to work. More importantly, the contributing factors may vary from one bus route to another. Time series based methods can be of great interest as they require only historical time series data, which can be collected using a facility known as automatic vehicle location (AVL) system. This paper assesses four different time series based methods namely random walk, exponential smoothing, moving average (MA), and autoregressive integrated moving average to model and estimate BDT based on AVL data collected from Auckland. The performances of the proposed methods are ranked based on three important factors namely prediction accuracy, simplicity, and robustness. The models showed promising results and performed differently for central business district (CBD) and non‐CBD bus stops. For CBD bus stops, MA model performed the best, whereas for non‐CBD bus stops, ARIMA model performed the best compared with other time series based models. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The paper presents a life-cycle assessment of costs and greenhouse gas emissions for transit buses deploying a hybrid input-output model to compare ultra-low sulfur diesel to hybrid diesel-electric, compressed natural gas, and hydrogen fuel-cell. We estimate the costs of emissions reductions from alternative fuel vehicles over the life cycle and examine the sensitivity of the results to changes in fuel prices, passenger demand, and to technological characteristics influencing performance and emissions. We find that the alternative fuel buses reduce operating costs and emissions, but increase life-cycle costs. The infrastructure requirement to deploy and operate alternative fuel buses is critical in the comparison of life-cycle emissions. Additionally, efficient bus choice is sensitive to passenger demand, but only moderately sensitive to technological characteristics, and that the relative efficiency of compressed natural gas buses is more sensitive to changes in fuel prices than that of the other bus types.  相似文献   

20.
Urban air quality is generally poor at traffic intersections due to variations in vehicles’ speeds as they approach and leave. This paper examines the effect of traffic, vehicle and road characteristics on vehicular emissions with a view to understand a link between emissions and the most likely influencing and measurable characteristics. It demonstrates the relationships of traffic, vehicle and intersection characteristics with vehicular exhaust emissions and reviews the traffic flow and emission models. Most studies have found that vehicular exhaust emissions near traffic intersections are largely dependent on fleet speed, deceleration speed, queuing time in idle mode with a red signal time, acceleration speed, queue length, traffic-flow rate and ambient conditions. The vehicular composition also affects emissions. These parameters can be quantified and incorporated into the emission models. There is no validated methodology to quantify some non-measurable parameters such as driving behaviour, pedestrian activity, and road conditions  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号