首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Traffic is the largest contributor (37%) to urban air pollution in India. During commuting, passengers are significantly exposed to pollutants. We carried out a study on a National Highway (NH) in India to measure personal exposure to Particulate Matter (PM) in five travel modes. PM2.5 concentrations showed the following trend: Bus > Car FA (fresh air mode of air condition) > Bus AC > Car > Car RC (re-circulation mode of air condition). Highest and lowest concentrations of PM10 were observed in Bus (134 ± 47 µg m−3) and Car RC (20 ± 5 µg m−3), respectively. The exposures were highest at the rear seats during the Bus AC journeys. In Car FA, the contribution of PM1 to total concentrations was dominant (61%). Travel modes explained highest variabilities in PM10, PM2.5 and PM1 concentrations. In all travel modes, the highest particle counts were observed for PM0.3–0.5. PM>0.5–5.0 counts during Bus journeys were comparatively higher than remaining modes. Deposition doses of passengers were as high as 3.22 µg of PM10 (in Bus), 0.66 µg of PM2.5 (in Bus) and 0.06 µg of PM1 (in Bus AC) during the ~1 h journey. Our study revealed that Car RC is the safest mode of travel, both in terms of personal exposures and PM depositions in respiratory system. The results from this study can be used to target efforts to reduce personal exposure of highway commuters.  相似文献   

2.
Samples of PM2.5 and PM10 at four types of roadside location (major road, secondary road, branch road, and expressway) in Tianjin were collected and analyzed in 2015. The average annual roadside PM2.5 and PM10 concentrations were higher than the national ambient air quality standard (NAAQS: GB3095-2012). The chromium (Cr), manganese (Mn), nickel (Ni), zinc (Zn), arsenic (As), and cadmium (Cd) concentrations in both PM2.5 and PM10 over four seasons displayed significant differences (p < 0.05). An enrichment factor (EF) analysis revealed that Cd, copper (Cu), Zn, As, Ni, and Pb in PM2.5 and PM10 mainly originated from anthropogenic sources. A factor analysis (FA) and correlation analysis (CA) revealed that vehicle emissions (exhaust and non-exhaust), soil dust, coal combustion, and industrial emissions were the main sources of roadside PM2.5 and PM10 in Tianjin. Both the total hazard quotients (total HQ) and the total carcinogenic risk (total CR) for selected elements in PM2.5 and PM10 were within acceptable limits. The HQ of Pb was higher than for other metals, and it should therefore be given special attention. The CR for traffic policemen was highest for Cr exposure (1.01 × 10−5 for PM2.5 and 1.52 × 10−5 for PM10), followed by As and Ni. A sensitivity analysis showed that the total contributions of the metal concentrations, exposure time (ET), and exposure frequency (EF) accounted for over 50% of the risk for Cr, As, and Ni, suggesting that these metals had the greatest impact on the uncertainty of health risk assessments.  相似文献   

3.
In this study, real-time monitoring campaigns were conducted in two tunnels (Line A and Line B) at a subway station in Shanghai, including temperature, relative humidity, PM1, PM2.5 and PM10, in order to understand the climate and PM characteristics in the transportation microenvironment. In addition, collected floor dust particles in the tunnel were analyzed by ICP for their metal elemental composition. Strong correlations occurred between all PM levels and meteorological parameters in the tunnel of Line A (with platform screen doors), in comparison with the weak correlations between such parameters in the tunnel of Line B (without platform screen doors). PM2.5 and PM10 between peak hours and off-peak hours for both lines presented significant differences (p < 0.05), respectively. Nevertheless, PM1 showed a different pattern, with p > 0.05 for Line A and p < 0.05 for Line B, respectively. In addition, statistical results concluded that PM had an evident weekly variation for both lines. Friday was the highest day of all particulate matters in monitoring periods for both lines. Ratios of PM1/PM10 and PM2.5/PM10 were high when trains were out of service and low when trains were in service. Relative abundance of metal elements detected from floor dust particles proved that floor dust particles in tunnels might be a major source of airborne PM in the subway microenvironments, with Fe as the most abundant metal element, followed by Ca, Al, Mg, Mn, Zn, Cu, Cr, Ni, Pb and Hg.  相似文献   

4.
Studies on the natural human exposures to fine particulate matter (PM2.5) and their elements composition are practically non-existent in South America. In order to understand the natural exposure of the typical Brazilian population to PM2.5 and their trace element composition, we measured PM2.5 concentrations and collected mass on filters for nine continuous hours during a typical workday of volunteers. In addition, bus routes were performed at peak and non-peak periods, mimicking the routine activity of the population. Mean concentrations of PM2.5 in the bus and car groups were similar while the fraction of BCe was higher for the bus group. For all routes, mean PM2.5 concentrations were higher during peak than non-peak hours, with an average of 43.5 ± 33.1 μg m−3 and 14.3 ± 10.2 μg m−3, respectively. The trace elements S, K and Na originated mainly from vehicle emissions; Na was associated with the presence of biofuel in diesel. Toxic elements (Pb, Cr, Cu, Ni, Zn, Mn) were found at low levels as evident by the total hazard index that ranged from 2.15 × 10−03 to 1.38 for volunteers. For all routes, the hazard index ranged from 2.25 × 10−03 to 5.03. Average PM2.5 respiratory deposition dose was estimated to be 0.60 μg/kg-hour for peak hours. Potential health damages to people during their movements and at workplaces close to the traffic were identified. Improvements in the design of the building to reduce the entrance of air pollutants as well as the use of filters in the buses could help to limit population exposure.  相似文献   

5.
Based on the national emission inventory data from different countries, heavy-duty trucks are the highest on-road PM2.5 emitters and their representation is estimated disproportionately using current modeling methods. This study expands current understanding of the impact of heavy-duty truck movement on the overall PM2.5 pollution in urban areas through an integrated data-driven modeling methodology that could more closely represent the truck transportation activities. A detailed integrated modeling methodology is presented in the paper to estimate urban truck related PM2.5 pollution by using a robust spatial regression-based truck activity model, the mobile source emission and Gaussian dispersion models. In this research, finely resolved spatial–temporal emissions were calculated using bottom-up approach, where hourly truck activity and detailed truck-class specific emissions rates are used as inputs. To validate the proposed methodology, the Cincinnati urban area was selected as a case study site and the proposed truck model was used with U.S. EPA’s MOVES and AERMOD models. The heavy-duty truck released PM2.5 pollution is estimated using observed concentrations at the urban air quality monitoring stations. The monthly air quality trend estimated using our methodology matches very well with the observed trend at two different continuous monitoring stations with Spearman’s rank correlation coefficient of 0.885. Based on emission model results, it is found that 71 percent of the urban mobile-source PM2.5 emissions are caused by trucks and also 21 percent of the urban overall ambient PM2.5 concentrations can be attributed to trucks in Cincinnati urban area.  相似文献   

6.
The concentrations of particulate matter, PM2.5, PM10, and TSP at an urban roadside and an urban background station are analyzed. Data collected over a 10 year period are analyzed. The concentrations of the particulates measured at the urban site are systematically larger than at the background station. The mean PM values at the former also exhibit a slight fall over the decade unlike those at the background station. Overall, the particulate matters at both locations are in an intermediate range of global level, e.g., approximately two times lower than those in other Asian regions but higher than in Europe.  相似文献   

7.
More than 9 million passengers take Shanghai’s subway system every work day. The system’s air quality has caused widespread concern because of the potential harm to passengers’ health. We measured the particulate matter (PM) concentrations at three kinds of typical underground platform (side-type, island-type, and stacked-type platforms) and inside the trains in Shanghai’s metro during 7 days of measurements in April and July 2015. Our results demonstrated that the patterns of air quality variation and PM concentrations were similar at the side-type and island-type platforms. We also found that the PM concentrations were higher on the platforms than inside the train and that the PM concentrations in the subway system were positively correlated with those in the ambient air. Piston wind generated by vehicle motion pushes air from the tunnel to the platform, so platform PM concentrations increase when trains approach the platform. However, the piston wind effect varies greatly between locations on the platform. In general, the effect of the piston wind is weaker at the middle of the platform than at both ends. PM concentrations inside the train increase after the doors open, during which time dirty platform air floods into the compartments. PM1.0 and PM2.5 were significantly correlated both inside the train and on the platforms. PM1.0 accounted for 71.9% of PM2.5 inside the train, which is higher than the corresponding platform values. Based on these results, we propose some practical suggestions to minimize air pollution damage to passengers and staff from the subway system.  相似文献   

8.
Air quality inside transportation carriages has become a public concern. A comprehensive measurement campaign was conducted to examine the commuters’ exposure to PM2.5 (dp  2.5 μm) and CO2 in Shanghai metro system under different conditions. The PM2.5 and CO2 concentrations inside all the measured metro lines were observed at 84 ± 42 μg/m3 and 1253.1 ± 449.1 ppm, respectively. The factors that determine the in-carriage PM2.5 and CO2 concentrations were quantitatively investigated. The metro in-carriage PM2.5 concentrations were significantly affected by the ventilation systems, out-carriage PM2.5 concentrations and the passenger numbers. The largest in-carriage PM2.5 and CO2 concentrations were observed at 132 μg/m3 and 1855.0 ppm inside the carriages equipped with the oldest ventilation systems. The average PM2.5 and CO2 concentrations increased by 24.14% and 9.93% as the metro was driven from underground to overground. The average in-carriage PM2.5 concentrations increased by 17.19% and CO2 concentration decreased by 16.97% as the metro was driven from urban to the suburban area. It was found that PM2.5 concentration is proportional to the on-board passenger number at a ratio of 0.4 μg/m3·passenger. A mass-balance model was developed to estimate the in-carriage PM2.5 concentration under different driving conditions.  相似文献   

9.
This study investigates the effect of traffic volume and speed data on the simulation of vehicle emissions and hotspot analysis. Data from a microwave radar and video cameras were first used directly for emission modelling. They were then used as input to a traffic simulation model whereby vehicle drive cycles were extracted to estimate emissions. To reach this objective, hourly traffic data were collected from three periods including morning peak (6–9 am), midday (11–2 pm), and afternoon peak (3–6 pm) on a weekday (June 23, 2016) along a high-volume corridor in Toronto, Canada. Traffic volumes were detected by a single radar and two video cameras operated by the Southern Ontario Centre for Atmospheric Aerosol Research. Traffic volume and composition derived from the radar had lower accuracy than the video camera data and the radar performance varied by lane exhibiting poorer performance in the remote lanes. Radar speeds collected at a single point on the corridor had higher variability than simulated traffic speeds, and average speeds were closer after model calibration. Traffic emissions of nitrogen oxides (NOx) and particulate matter (PM10 and PM2.5) were estimated using radar data as well as using simulated traffic based on various speed aggregation methods. Our results illustrate the range of emission estimates (NOx: 4.0–27.0 g; PM10: 0.3–4.8 g; PM2.5: 0.2–1.3 g) for the corridor. The estimates based on radar speeds were at least three times lower than emissions derived from simulated vehicle trajectories. Finally, the PM10 and PM2.5 near-road concentrations derived from emissions based on simulated speeds were two or three times higher than concentrations based on emissions derived using radar data. Our findings are relevant for project-level emission inventories and PM hot-spot analysis; caution must be exercised when using raw radar data for emission modeling purposes.  相似文献   

10.
In this study, particulate matter was investigated as the primary pollutant in the air quality of Beijing Metro transfer stations, and passenger thermal comfort during the transfer process was evaluated by using the relative warmth index (RWI). Passenger thermal comfort level is not ideal in 87% of the measured space and is slightly hot overall, with an RWI range of 0.20–0.43. Although 20% of the measured space has lower values than ASHRAE’s cooling comfort class, the thermal comfort level of most measured space is good in winter morning rush hours, with an RWI range from −0.18 to 0.28. The particulate matter (PM) concentration is related not only to the season and spatial depth but also to the transfer design of the metro station. During the morning rush period, the concentration ranges difference of PM10 and PM2.5 in winter are 262.9 μg/m3 and 125.5 μg/m3, respectively, which are 1.43 and 1.46 times higher than those of in summer. There are significant differences in the PM concentration and RWI values between the island and lateral platforms of Beijing Metro transfer stations, and the design of the lateral platform is superior to that of the island platform. Another exploratory experiment is conducted to determine if the PM concentration has a potential effect on human metabolic rate. The data in this paper provide a valuable reference for further comfort research and environmental control in metro station, and the conclusions may guide the further underground space design of metro transfer stations.  相似文献   

11.
Sampling campaign was conducted over six weeks to determine particulate matter (PM) concentrations from Sydney Trains airport line (T2) at both underground and ground levels using DustTrak. Dust samples were collected and analysed for 12 metals (Fe, Ca, Mn, Cr, Zn, Cu, Pb, Al, Co, Ni, Ba and Na) by atomic emission spectroscopy. Average underground PM10 and PM2.5 concentrations from inside the trains were 2.8 and 2.5 times greater than at ground level. Similarly, PM10 and PM2.5 concentrations on underground platforms were 2.7 and 2.5 times greater than ground level platforms. Average underground PM concentrations exceeded the national air quality standards for both PM10 (50 µg/m3) and PM2.5 (25 µg/m3). Correlation analysis showed a strong to moderate association between PM concentrations at ground level and background PM concentrations (r2 from 0.952 to 0.500). The findings suggested that underground PM concentrations were less influenced by the ambient background than at ground level. The metal concentrations decreased in the order of Fe, Cr, Ca, Al, Na, Ba, Mn, Zn, Cu, Ni, Co and Pb. The pollution index (PI) and enrichment factor (EF) values were calculated to identify the levels and sources of contamination in the underground railway microenvironments. PM was remarkably rich in Fe with a mean concentration of 73.51 mg/g and EF of 61.31, followed by Ni and Cr. These results noticeably indicated a high level of metal contamination in the underground environments, with the principal contribution from track abrasion and wear processes.  相似文献   

12.
Indoor air quality in subterranean train stations is a concern in many places around the globe. However, due to the specificity of each case, numerous parameters of the problem remain unknown, such as the braking discs particle emission rate, the ventilation rate of the station or the complete particle size distribution of the emitted particles. In this study the problem of modelling PM10 concentration evolution in relation with train traffic is hence addressed with a particle-mass conservation model which parameters are fitted using a genetic algorithm. The parameters of the model allow to reproduce the dynamics and amplitude of four field data sets from the French and Swedish underground contexts and comply with realistic bounds in terms of emissions, deposition and ventilation rate.  相似文献   

13.
This paper presents the characterization of air quality monitored at near field region (NFR) and far field region (FFR) of a national highway located at an industrial complex. The pollutants such as PM10, SO2 and NO2 were monitored in two campaigns (11th September to 18th October 2012 and 18th January to 17th February 2013). The 24 h average PM10 concentration at NFR and FFR were found to be 86.69 ± 18.56 μg/m3; 73.16 ± 16.21 μg/m3 and 89.44 ± 18.69 μg/m3; 81.91 ± 16.42 μg/m3, respectively during first and second campaign. In both the campaigns PM10, SO2 and NO2 concentration at NFR was higher than FFR. The chemical characterization of PM10 at NFR and FFR indicated the abundance of major elements such as Na (NFR = 30% and FFR = 32%), Ca (NFR = 12% and FFR = 14%) and ions namely NO3 (NFR = 71% and FFR = 68%) and NH3+ (NFR = 15% and FFR = 19%). Further, at FFR, SO42 and NO3 were found to be 18% and 35% higher than NFR indicating the conversions of SO2 and NO2 concentration into secondary particles. The measured SO2 and NO2 concentrations were 23 and 21% lower at FFR when compared to NFR confirms the secondary formation.The CALPUFF, EPA regulatory model was set up to understand the dynamics of air pollutants at the industrial complex. The predicted PM10, SO2 and NO2 concentrations at NFR and FFR were found to be 32.31 ± 1.56 μg/m3 and 31.35 ± 1.27 μg/m3; 0.37 ± 0.21 μg/m3 and 0.06 ± 0.04 μg/m3; 12.83 ± 6.55 μg/m3 and 4.67 ± 2.77 μg/m3, respectively. The model showed moderate predictions for PM10 (R2 = 0.44–0.52), SO2 (R2 = 0.41–0.51) and NO2 (R2 = 0.45–0.61) concentrations.  相似文献   

14.
The main challenge facing the air quality management authorities in most cities is meeting the air quality limits and objectives in areas where road traffic is high. The difficulty and uncertainties associated with the estimation and prediction of the road traffic contribution to the overall air quality levels is the major contributing factor. In this paper, particulate matter (PM10) data from 10 monitoring sites in London was investigated with a view to estimating and developing Artificial Neural Network models (ANN) for predicting the impact of the road traffic on the levels of PM10 concentration in London. Twin studies in conjunction with bivariate polar plots were used to identify and estimate the contribution of road traffic and other sources of PM10 at the monitoring sites. The road traffic was found to have contributed between 24% and 62% of the hourly average roadside PM10 concentrations. The ANN models performed well in predicting the road contributions with their R-values ranging between 0.6 and 0.9, FAC2 between 0.6 and 0.95, and the normalised mean bias between 0.01 and 0.11. The hourly emission rates of the vehicles were found to be the most contributing input variables to the outputs of the ANN models followed by background PM10, gaseous pollutants and meteorological variables respectively.  相似文献   

15.
A common policy for reducing particulate matter concentrations in the European Union is the introduction of Low Emission Zones (LEZs), which may only be entered by vehicles meeting predefined emission standards. This paper examines the effectiveness of LEZs for reducing PM10 levels in urban areas in Germany and quantifies the associated health impacts from reduced air pollution within the zones. We employ a fixed effects panel data model for daily observations of PM10 concentrations from 2000 to 2009 and control, inter alia, for local meteorological conditions and traffic volume. We apply the regression outputs to a concentration response function derived from the epidemiological literature to calculate associated health impacts of the introduction of LEZs in 25 German cities with 3.96 million inhabitants. Associated uncertainties are accounted for in Monte-Carlo simulations. It is found that the introduction of LEZs has significantly reduced inner city PM10 levels. We estimate the total mean health impact from reduced air pollution in 2010 due to the introduction of stage 1 zones to be ∼760 million EUR in the 25 LEZ cities in the sample, whereas total mean health benefits are ∼2.4 billion EUR for the more stringent stage 2 zones when applied in the same cities.  相似文献   

16.
This study examines the concentrations of air pollutants in passenger carriages on a number of lines of the Beijing railway transit system differentiating between services with and without air conditioning. In-train air quality monitoring found PM10 concentrations are extremely high compared with other cities. Integrated factor assessment results show that the in-train air quality in the ground railway transit system where there is air conditioning is more acceptable than in the underground system.  相似文献   

17.
In 2008 the regional government of Catalonia (Spain) reduced the maximum speed limit on several stretches of congested urban motorway in the Barcelona metropolitan area to 80 km/h, while in 2009 it introduced a variable speed system on other stretches of its metropolitan motorways. We use the differences-in-differences method, which enables a policy impact to be measured under specific conditions, to assess the impact of these policies on emissions of NOx and PM10. Empirical estimation indicate that reducing the speed limit to 80 km/h causes a 1.7–3.2% increase in NOx and 5.3–5.9% in PM10. By contrast, the variable speed policy reduced NOx and PM10 pollution by 7.7–17.1% and 14.5–17.3%. As such, a variable speed policy appears to be a more effective environmental policy than reducing the speed limit to a maximum of 80 km/h.  相似文献   

18.
One of the major drawbacks of conventional air quality models is their inability in accurately predicting extreme air pollutant concentrations. Hybrid modelling is one of the techniques that estimates/predicts the ‘entire range’ of the distribution of pollutant concentrations by combining the deterministic based models (capable in predicting average range) with suitable statistical (probability) distribution models (capable in predicting extreme range). This research paper describes system based approach in developing hybrid model to predict hourly averages as well as extreme percentile ranges of NOx and PM2.5 concentrations at two urban locations having complex traffic heterogeneity, highly variable tropical meteorology and different geographical characteristics. At one of the selected locations i.e. Delhi megacity, during winters, hybridization of AERMOD and Lognormal predicts NOx and PM2.5 concentrations satisfactorily with index of agreement ‘d’ values of 0.98–0.99, respectively; however, during summers, AERMOD-Log-logistic and AERMOD-Lognormal are best predicting NOx and PM2.5 concentrations with d values of 0.98–0.96, respectively. In another, i.e., Chennai, a coastal megacity, AERMOD-Lognormal predicts PM2.5 concentrations satisfactorily with d values of 0.98 and 0.99 during winter and summer seasons, respectively. Further, hybrid model has also been used to evaluate regulatory compliance.  相似文献   

19.
Ambient concentrations of pollutants are correlated with emissions, but the contribution to ambient air quality of on-road mobile sources is not necessarily equal to their contribution to regional emissions. This is true for several reasons such as the distribution of other pollution sources and regional topology, as well as meteorology. In this paper, using a dataset from a travel demand model for the Sacramento metropolitan area for 2005, regional vehicle emissions are disaggregated into hourly, gridded emission inventories, and transportation-related concentrations are estimated using an atmospheric dispersion model. Contributions of on-road motor vehicles to urban air pollution are then identified at a regional scale. The contributions to ambient concentrations are slightly higher than emission fractions that transportation accounts for in the region, reflecting that relative to other major pollution sources, mobile sources tend to have a close proximity to air quality monitors in urban areas. The contribution results indicate that the impact of mobile sources on PM10 is not negligible, and mobile sources have a significant influence on both NOx and VOC pollution that subsequently results in secondary particulate matter and ozone formation.  相似文献   

20.
The paper analyzes Russian and European emission and dispersion models aimed at the estimation of road transport related air pollution on street and regional scale as exemplified with St. Petersburg, Russia. It demonstrates the results of model calculations of peak concentrations of main harmful substances (NОX, CO and PM10) along the St. Petersburg Ring Road at high traffic volume and adverse meteorological conditions (calm, temperature inversion) executed by means of a Russian street pollution model, and it evaluates the computed results against the measurements from monitoring stations. The paper also examines the ways of adaptation of the COPERT IV model – a software tool for calculation of air pollutant and greenhouse gas emissions from road transport on regional or country scale – to the inventory conditions of the Russian Federation, compares the COPERT IV numerical estimates with the national inventory data. It also reveals the obstacles and possibilities in the harmonization of the Russian and European approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号