首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
为提高电动汽车锂离子电池剩余循环寿命预测的准确性,提出了一种基于改进支持向量回归机的预测算法,利用免疫完全学习型粒子群优化算法对支持向量回归机的惩罚系数和超参数进行优化,增强其预测能力,基于NASA PCoE研究中心提供的锂电池测量数据,与完全学习型粒子群优化的支持向量回归机预测算法进行对比分析,仿真结果显示,本文提出的算法预测相对误差低于6%,容量预测平均相对误差低于0.4%,具有更好的预测性能。  相似文献   

2.
实时、准确的交通流预测是智能交通控制和诱导的关键之一,针对实际中短时交通流数据批量增加的情况,为了提高预测模型准确性、缩短运行时间和模型更新问题,文章提出了一种基于批处理增量学习Lagrange支持向量回归机的短时交通流预测模型。仿真实验表明,与传统的支持向量回归机增量学习算法相比,提高了模型的预测精度,缩短了训练时间。  相似文献   

3.
4.
龚艳冰  陈森发 《公路交通科技》2007,24(2):140-142,154
建立了选址决策的模糊评价矩阵,应用支持向量机方法(SVM)来处理数据,进行物流配送中心的选址决策。支持向量回归机根据所提供的数据,通过学习和训练,找出输入与输出的内在联系,从而求取问题的解,而不是根据经验知识,因而具有自适应功能,能弱化指标权重确定中人为因素的影响。与传统方法相比较,有较好的泛化能力,能较客观地对多个选址方案的优劣进行评价。最后,引用实例说明利用支持向量回归机完成评价工作的全部步骤。  相似文献   

5.
传统的交通流预测技术使用静态和离线算法,无法对模型的参数值和内部结构进行在线调整.然而,交通流变化具有明显的动态性,其内在模式会随时间发生变化,导致构建好的模型准确度下降.针对上述问题,提出了基于数据流集成回归的短时交通流预测模型.将不断产生的交通流数据划分成数据块,每个数据块训练1个基础回归模型,然后加权组合为集成模型.通过不断训练新的基础模型,并置换出集成模型中准确度最差的基础模型,实现在线更新.在实测数据上的对比实验结果表明,与静态离线的BN模型相比,模型的均方根误差降低了19.5%,运算时间降低了48.7%,并能够快速适应交通状况发生明显变化的情况,适用于城市主干道路的短时交通流预测问题.   相似文献   

6.
针对城市私人汽车保有量增长预测问题,在对支持向量机理论进行改进的基础上,进行滚动预测研究。在对已有的机动车保有量预测模型进行对比分析的基础上,建立了基于支持向量机的私人汽车保有量滚动预测模型,并利用北京市私家车保有量历史数据对滚动预测模型进行了实证分析。结果表明该预测模型具有较高的预测精度、符合实际需求、具有广泛的应用前景。  相似文献   

7.
利用支持向量机结构简单、学习性能出色和较强的推广性等优点,通过对已有实例样本的学习,建立了水泥28d抗压强度与其各影响因素之间的高度非线性映射关系,然后用样本学到的新关系预测新的水泥抗压强度,并将预测结果与传统回归分析、神经网络预测结果进行了对比。研究表明,与传统的方法相比,支持向量机方法精度较高、相对误差小,为预测水泥28d抗压强度提供了一条新途径。  相似文献   

8.
在智能交通系统中,进行实时、准确的交通流预测是交通控制和交通流诱导的关键之一,直接影响交通控制和交通诱导的效果.基于支持向量机,提出了一种Lagrange支持向量回归机的交通流量短时预测模型,能够实现对交通流量的有效预测.仿真试验表明,Lagrange支持向量回归机具有良好的泛化性能、更快的迭代速度,预测结果优于改进的BP神经网络.  相似文献   

9.
基于改进支持向量机的交通流量预测算法研究   总被引:1,自引:0,他引:1  
城市交通流具有复杂性、时变性和随机性,如何实时准确的预测交通流量是实现智能交通诱导及控制的前提.结合交通流的时间序列特性,提出基于改进支持向量机的交通流预测算法,该算法能够克服神经网络预测的不足,对支持向量机算法在嵌入维数、核函数和参数选择上进行了改进.实验仿真结果表明,该算法具有很好的预测精度和适用性.  相似文献   

10.
支持向量机是近年来在统计学习理论基础上发展起来的一种新的模式识别方法,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势.将支持向量机用于基坑变形预测,根据基坑位移的实测时间序列资料,建立基坑位移与时间的关系模型.将实际基坑工程监测资料作为学习训练样本和测试样本,将模型计算结果与实际监测值进行对比分析、研究....  相似文献   

11.
基于线性规划支持向量机的隧道围岩变形预测   总被引:3,自引:0,他引:3  
支持向量机(SVM)以其良好的学习性能被广泛应用于包括隧道围岩变形在内的时间序列预测,核函数形式对其预测能力有重要影响,故灵活运用核技巧来增强推广性能已成为支持向量机应用研究的一个重要方面.对于标准SVM及最小二乘支持向量机(LS-SVM),由于其核函数必须满足Mercer条件,因而大大限制了核函数选取范围,制约着推广能力的进一步提升.为此引入一种新型的时间序列预测模型--线性规划支持向量机(LP-SVM),因其核函数不必满足Mercer条件,从而为灵活选取核函数提供了方便.将新预测模型应用于岭南高速公路雪家庄隧道围岩变形预测,分析结果表明,在同时采用径向基(RBF)核函数的情况下,LP-SVM与LS-SVM的预测精度非常接近,能够满足工程需要,但由于前者的核函数可以在更大范围内选取,使其预测性能具有更大的提升空间,从而为岩体变形预测提供了一种更具潜力的新途径.  相似文献   

12.
13.
如何提高工业机器人的定位精度是实现汽车焊点自动化检测任务的一个关键技术问题。针对传统示教再现机器人存在的定位精度问题,提出一种基于机器视觉和支持向量机回归的焊点定位方法。通过融合激光测距信息的视觉系统测量机器人示教位置与期望位置的偏差,进行焊点的初步定位;建立基于粒子群优化算法的支持向量机回归模型,对视觉引导后的机器人末端进行三维空间上的误差补偿,实现焊点的精确定位;搭建了一套完整的试验平台,并与常用的支持向量机参数优化算法以及误差补偿模型进行比较和误差分析,验证了该方法的有效性和优越性。  相似文献   

14.
基于支持向量机的单桩竖向极限承载力预测   总被引:1,自引:2,他引:1  
在综合了各种单桩竖向极限承载力分析方法的基础上,建立了相应的单桩竖向极限承载力预测模型。以实测数据为学习样本和测试样本,讨论了基于支持向量机的单桩竖向极限承载力分析方法及其可行性。研究表明,该法更能反映桩的实际受力过程,具有一定的工程应用价值。  相似文献   

15.
电池故障诊断是电池管理系统中一项十分重要的技术。针对电池故障和电池输出状态量之间不确定的关系,采用模糊逻辑可以对模糊关系进行准确描述。选用合适的隶属度函数来表示输出的电压、电流信号,用模糊数学理论表示不确定的电池故障与电池输出状态量之间的关系,生成模糊数据库,用支持向量机对数据进行训练和测试,由结果可知该方法有较高的准确性。  相似文献   

16.
多年冻土路基热稳定性差,工后沉降量大,路基病害较为严重。如果能够准确预测该类路基的工后融沉值,就可为工程建设提供重要的参考依据,从而提高该类路基的路用性能。为此,在对现有预测模型应用效果分析的基础上,首次将支持向量机应用于多年冻土路基融沉变形的预测中,提出了一种有效可行的新型预测方法,并以实际工程为依托,构建了基于支持向量机原理的多年冻土路基融沉变形预测模型。通过与实测值及其它预测模型的对比分析表明:该模型在预测过程中有效的避免了“过拟合”及“维数灾难”,人为干预较少,具有预测精度高,泛化能力强,预测结果稳定的特点,成功的解决了多年冻土路基影响因素多,样本数量少等带来的预测难题。  相似文献   

17.
城市地铁车辆段整体道床区路基对工后沉降有严格要求。为保证路基沉降观测数据的可靠性,首先采用沉降观测异常数据判别方法,对沉降数据进行了预处理;根据路基沉降数据的特性,分别以支持向量机和神经网络法为核心技术构建了路基沉降预测模型,并通过工程实例详细介绍了预测方法与过程。对比分析表明:基于支持向量机和神经网络法构建的预测模型均有较好的预测精度;预测结果显示,依托工程路基沉降已基本趋于稳定,运营期不会发生较大的工后沉降,现有地基处理与路基填筑压实的施工方法是有效的。  相似文献   

18.
通过采集发动机缸壁表面的振动信号并对信号进行区间小波包分解,与最小二乘支持向量机相结合,以部分测试信号作为训练样本建立分类器,部分样本作为测试样本输入分类器中进行判断识别,通过设置不同的参数寻找到最优分类结果,最终判别出发动机的缸壁间隙。  相似文献   

19.
基于主成分分析与支持向量机结合的交通流预测   总被引:1,自引:1,他引:1  
为提高交通流预测的预测精度和预测速度,提出了用非线性回归支持向量机与主成分分析相结合进行交通流预测的方法。主成分分析用来对交通流预测的预测变量进行特征抽取,用较少的主成分代替原预测变量.将生成的主成分输入到非线性回归支持向量机,进行交通流预测,支持向量机的核参数利用Bayesian推理进行确定。通过对济南市交通数据的实例分析来验证该方法的有效性。结果表明,非线性回归支持向量机与主成分分析相结合进行交通流预测不但可以提高交通流预测的精度,同时还可以降低预测所需的计算量,满足交通流预测的实时性要求,预测精度比目前常用交通流预测方法的预测精度有所提高。  相似文献   

20.
基于支持向量机的车牌字符识别   总被引:1,自引:0,他引:1  
支持向量机(Support Vector Machines,简称SVM)能够有效地解决小样本学习、非线性及高维模式识别等问题。对此提出了在无特征提取情况下基于SVM的车牌字符识别方法,通过实验选定二次多项式作为核函数,并将基于SVM的车牌字符识别与基于BP神经网络的车牌字符识别进行了实验对比。结果表明,在训练样本较少的情况下,该系统具有较高的识别率和识别速度,并具有很好的分类推广能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号