首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper addresses the problem of estimating salinity for a large region in the Atlantic Ocean containing the Gulf Stream and its recirculation. Together with Part 1 [Thacker, W.C., 2007-this issue. Estimating salinity to complement observed temperature: 1. Gulf of Mexico. Journal of Marine Systems. doi:10.1016/j.jmarsys.2005.06.008.] dealing with the Gulf of Mexico, this reports on the first efforts of a project for developing world-wide capability for estimating salinity to complement expendable-bathythermograph (XBT) data. Such estimates are particularly important for this region, where the strong frontal contrasts render the task of assimilating XBT data into numerical models more sensitive to the treatment of salinity.Differences in salinity's co-variability with temperature and with longitude, latitude, and day-of-year from the northwestern part of the region with the Gulf Stream to the southeastern part more characteristic of the Sargasso sea suggested that the region be partitioned to achieve more accurate salinity estimates. In general, accuracies were better in the southeastern sub-region than in the more highly variable northwestern sub-region with root-mean-square estimation errors of 0.15 psu at 25 dbar and 0.02 psu at 300 dbar as compared with 0.35 psu and 0.50 psu, respectively, but in the southeast there was an unexpected error maximum around 1000 dbar where estimates were slightly less accurate than in the northwest. For pressures greater than 1400 dbar root-mean-square errors in both sub-regions were less than 0.02 psu.  相似文献   

2.
The dissolved lead was studied in the whole salinity gradient of the system composed of the Loire estuary and the North Biscay continental shelf. About 130 samples were collected in winter 2001 and spring 2002 during Nutrigas and Gasprod campaigns (Programme PNEC-Golfe de Gascogne, RV Thalassa) and metal measurements were conducted on board by Potentiometric Stripping Analysis. In the Loire estuary, levels of dissolved lead ranged from 0.15 to 0.24 nM and from 0.04 to 0.26 nM in winter and spring, respectively. Compared to the concentrations reported in 1987 and 1990 (0.4–1.7 nM; Boutier, B., Chiffoleau, J.F., Auger, D., Truquet, I., 1993. Influence of the Loire river on dissolved lead and cadmium concentrations in coastal waters of Brittany. Estuar. Coast. Shelf S., 36:133–143, Estuarine, Coastal and Shelf Science 36, 133–143) our study indicated much lower values. The fall in concentration in the estuary could be attributed to the stopping of activity of Octel, a big manufacturer of tetra alkyl lead. Discharge in dissolved metal to the continental shelf by the Loire river was assessed as 7.5 and 1.9 kg day− 1 for winter and spring, respectively. On the continental shelf, levels of dissolved lead varied within 0.06 and 0.27 nM in winter (0.15 ± 0.06 nM, sd = 1.96, n = 49), whereas concentrations measured in spring were in the range 0.06–0.17 nM (0.09 ± 0.03 nM, sd = 1.96, n = 60). This difference in metal concentration was related to the amounts of rainfall that have fallen over the continental shelf: estimations of inputs by this way (74 and 32 kg day− 1 in winter and spring, respectively) appeared to be significantly higher than inputs from the Loire river (7.5 and 1.9 kg day− 1 in winter and spring, respectively). The distributions of dissolved metal in the surface waters highlighted the role of suspended particular matter (SPM) for a rapid “trapping” of lead near the mouth of the estuary. The vertical distributions showed, in the stratified area, a biological transfer of lead between winter and spring from surface waters to the halocline.  相似文献   

3.
Columbia River tidal plume dynamics can be explained in terms of two asymmetries related to plume-front depth and internal wave generation. These asymmetries may be an important factor contributing to the observed greater primary productivity and phytoplankton standing crop on the Washington shelf. The tidal plume (the most recent ebb outflow from the estuary) is initially supercritical with respect to the frontal internal Froude number FR on strong ebbs. It is separated from the rotating plume bulge by a front, whose properties are very different under upwelling vs. downwelling conditions. Under summer upwelling conditions, tidal plume fronts are sharp and narrow (< 20–50 m wide) on their upwind or northern side and mark a transition from supercritical to subcritical flow for up to 12 h after high water. Such sharp fronts are a source of turbulent mixing, despite the strong stratification. Because the tidal plume may overlie newly upwelled waters, these fronts can mix nutrients into the plume. Symmetry would suggest that there should be a sharp front south of the estuary mouth under summer downwelling conditions. Instead, the downwelling tidal plume front is usually diffuse on its upstream side. Mixing is weaker, and the water masses immediately below are low in nutrients. There is also an upwelling–downwelling asymmetry in internal wave generation. During upwelling and weak wind conditions, plume fronts often generate trains of non-linear internal waves as they transition from a supercritical to a subcritical state. Under downwelling conditions, internal wave release is less common and the waves are less energetic. Furthermore, regardless of wind conditions, solition formation almost always begins on the south side of the plume so that the front “unzips” from south to north. This distinction is important, because these internal waves contribute to vertical mixing in the plume bulge and transport low-salinity water across the tidal plume into the plume bulge.FR and plume depth are key parameters in distinguishing the upwelling and downwelling situations, and these two asymmetries can be explained in terms of potential vorticity conservation. The divergence of the tidal outflow after it leaves the estuary embeds relative vorticity in the emerging tidal plume water mass. This vorticity controls the transition of the tidal plume front to a subcritical state and consequently the timing and location of internal wave generation by plume fronts.  相似文献   

4.
This paper describes the hydrographic conditions observed during six surveys carried out during 2003 and 2004, in the framework of the “IDEA Project” (acronym for “Influence of oceanographic structure and dynamics on demersal populations in waters of the Balearic Islands”). The surveys were developed on the shelf and slope of Mallorca Island, in particular in two fishing grounds at the north and south of the Mallorca channel. Periodic movements of the fishing fleet between these two areas have been regularly reported, suggesting a seasonal variability of the resources which could be in turn associated with the hydrodynamic variability. With this motivation, water masses affecting these grounds have been identified and their seasonal variability has been studied. Different oceanographic and environmental conditions have been found between the two fishing grounds. These differences are related to the presence of mesoscale structures, associated with the Western Mediterranean Intermediate Water (WIW) at the north of the Ibiza channel and big gyres detached from the Algerian Current. The former has been shown to have influence on the regional oceanic circulation and the latter could affect the progress of fresh Atlantic Water (AW) towards the channels and make possible the presence of high salinity values at intermediate waters at the south of Mallorca Island. Historical data from other oceanographic cruises carried out in the region are finally used to discuss the interannual variability of these mesoscale structures.  相似文献   

5.
Suspended material, nutrients and organic matter in Mackenzie River water were tracked along a 300 km transect from Inuvik (Northwest Territories, Canada), across the estuarine salinity gradient in Kugmallit Bay, to offshore marine stations on the adjacent Mackenzie Shelf. All particulates measured (SPM, POC, PN, PP) declined by 87–95% across the salinity gradient and levels were generally below conservative mixing. Organic carbon content of suspended material decreased from 3.1% in the river to 1.7% in shelf surface waters while particulate C:N concurrently decreased from 17.1 to 8.6. Nitrate and silicate concentrations declined by more than 90% across the salinity gradient, with nitrate concentrations often below the conservative mixing line. Phosphate concentrations increased from 0.03 μmol/L in the river to 0.27 μmol/L over shelf waters, thereby changing the inorganic nutrient regime downstream from P to N limitation. Dissolved organic carbon decreased conservatively offshore while dissolved organic N and P persisted at high levels in the Mackenzie plume relative to river water, increasing 2.7 and 25.3 times respectively. A deep chlorophyll-a maximum was observed at two offshore stations and showed increases in most nutrients, particulates and organic matter relative to the rest of the water column. During river passage through the Mackenzie estuary, particulate matter, dissolved organic carbon and inorganic nutrients showed sedimentation, dilution and biological uptake patterns common to other arctic and non-arctic estuaries. Alternatively, inorganic content of particles increased offshore and dissolved organic N and P increased substantially over the shelf, reaching concentrations among the highest reported for the Arctic Ocean. These observations are consistent with the presence of a remnant ice-constrained (‘stamukhi’) lake from the freshet period and a slow flushing river plume constrained by sea-ice in close proximity to shore. Nutrient limitation in surface shelf waters during the ARDEX cruise contributed to the striking deep chlorophyll-a maximum at 21 m where phytoplankton communities congregated at the margin of nutrient-rich deep ocean waters.  相似文献   

6.
The distribution of picophytoplankton (0.2–2 µm) and nanophytoplankton (2–20 µm) in the Beaufort Sea–Mackenzie Shelf and Amundsen Gulf regions during autumn, 2002 is examined relative to their ambient water mass properties (salinity, temperature and nutrients: nitrate + nitrite, phosphate, and silicate) and to the ratio of variable to maximum fluorescence, Fv/Fm. Total phytoplankton and cell abundances (< 20 µm) were mainly correlated with salinity. Significant differences in picophytoplankton cell numbers were found among waters near the mouth of the Mackenzie River, ice melt waters and the underlying halocline water masses of Pacific origin. Picophytoplankton was the most abundant phytoplankton fraction during the autumnal season, probably reflecting low nitrate concentrations (surface waters average ~ 0.65 µM). The ratio Fv/Fm averaged 0.44, indicating that cells were still physiologically active, even though their concentrations were low (max Chl a = 0.9 mg m− 3). No significant differences in Fv/Fm were evident in the different water masses, indicating that rate limiting conditions for photosynthesis and growth were uniform across the whole system, which was in a pre-winter stage, and was probably already experiencing light limitation as a result of shortening day lengths.  相似文献   

7.
As part of the Canadian Arctic Shelf Exchange Study (CASES), we investigated the spatial and seasonal distributions of viruses in relation to biotic (bacteria, chlorophyll-a (chl a)) and abiotic variables (temperature, salinity and depth). Sampling occurred in the southern Beaufort Sea Shelf in the region of the Amundsen Gulf and Mackenzie Shelf, between November 2003 and August 2004. Bacterial and viral abundances estimated by epifluorescence microscopy (EFM) and flow cytometry (FC) were highly correlated (r2 = 0.89 and r2 = 0.87, respectively), although estimates by EFM were slightly higher (FC = 1.08 × EFM + 0.12 and FC = 1.07 × EFM + 0.43, respectively). Viral abundances ranged from 0.13 × 106 to 23 × 106 ml− 1, and in surface waters were ~ 2-fold higher during the spring bloom in May and June and ~ 1.5-fold higher during July and August, relative to winter abundances. These increases were coincident with a ~ 6-fold increase in chl a during spring and a ~ 4-fold increase in bacteria during summer. Surface viral abundances near the Mackenzie River were ~ 2-fold higher than in the Mackenzie Shelf and Amundsen Gulf regions during the peak summer discharge, concomitant with a ~ 5.5-fold increase in chl a (up to 2.4 μg l− 1) and a ~ 2-fold increase in bacterial abundance (up to 22 × 105 ml− 1). Using FC, two subgroups of viruses and heterotrophic bacteria were defined. A low SYBR-green fluorescence virus subgroup (V2) representing ~ 71% of the total viral abundance, was linked to the abundance of high nucleic acid fluorescence (HNA) bacteria (a proxy for bacterial activity), which represented 42 to 72% of the bacteria in surface layers. A high SYBR-green fluorescence viral subgroup (V1) was more related to high chl a concentrations that occurred in surface waters during spring and at stations near the Mackenzie River plume during the summer discharge. These results suggest that V1 infect phytoplankton, while most V2 are bacteriophages. On the Beaufort Sea shelf, viral abundance displayed seasonal and spatial variations in conjunction with chl a concentration, bacterial abundance and composition, temperature, salinity and depth. The highly dynamic nature of viral abundance and its correlation with increases in chl a concentration and bacterial abundance implies that viruses are important agents of microbial mortality in Arctic shelf waters.  相似文献   

8.
9.
Inter-annual variability of hypoxic conditions in a shallow estuary   总被引:2,自引:0,他引:2  
Water quality data from two monitoring programs in the Pamlico River Estuary (PRE) were analyzed for dissolved oxygen (DO), salinity, temperature, and nutrient concentrations. Data were collected bi-weekly at 8 stations from 1997 to 2003 by East Carolina University and continuously at three stations from 1999 to 2003 by the U.S. Geological Survey. Hypoxic conditions were observed mostly in the upper to middle estuary, but the frequency of hypoxic events varied between years. During June to October in 1997–1999 (referred to as the oxic summers) bottom water hypoxia (DO < 2 mg l− 1) was found in 8.7% of the observations. By contrast, during June to October in 2001–2003 (referred to as the hypoxic summers), 37.9% of the total measurements had DO concentrations less than 2 mg l− 1. The more frequent and/or prolonged hypoxic conditions during the hypoxic summers were closely associated with stronger salinity stratification and greater loadings of nutrient and particulate matter.Salinity stratification appeared to be governed by patterns of freshwater discharge, and frequency of wind mixing events. The “oxic” summers were characterized by continuous low freshwater inflow (except one extremely high flow event due to hurricanes), stronger northeastward wind, and more frequent wind mixing events. In contrast, the hypoxic summers were characterized by frequent moderate freshwater inflow events, and fewer wind mixing events.The greater loadings of nutrient (nitrate, ammonium, and phosphate) and particulate matter during the hypoxic summers were primarily due to higher river discharges. At the head of the PRE, no significant differences were found in concentrations of nutrient and particulate nitrogen between the oxic and the hypoxic summers. In addition, chlorophyll a concentrations were averaged above 30 μg l− 1 (maximum 167 μg l− 1) during the hypoxic summers, significantly higher than those during the oxic summers (averaged around 15 μg l− 1).  相似文献   

10.
The shelf-slope front (SSF) is a continuous shelf-break front running from the Tail of the Grand Banks to Cape Hatteras, North Carolina, separating colder and less-saline continental shelf waters from warmer and more saline slope waters. Time series containing mean monthly SSF positions were produced along each of 26 longitude lines between 75° and 50°W by workers located at Bedford Institute of Oceanography by digitizing individual frontal charts and computing mean monthly latitudinal positions over a 29-year (1973–2001) period. After removing seasonal variability at each longitude, interannual variability (IAV) of the SSF position at each longitude was computed as the annual mean of all monthly SSF position anomalies for each year over the 29-year period. Despite some missing data, a longitude-time plot reveals alternating bands of offshore (late-1970s, late-1980s, late-1990s) and onshore (early-1980s, early-1990s, early-2000s) annual mean SSF anomaly values, exhibiting a period of approximately 10 years. Annual mean SSF anomaly amplitudes are largest in the east, with maxima of O (± 100 km) located east of 60° W for years when data are available. Empirical orthogonal function (EOF) modes 1–4 (accounting for > 90% of the variance) form a set of basis functions that describe the SSF anomaly data and allow reconstruction of the entire data set since missing data are relatively few (14%). A complex empirical orthogonal function (CEOF) analysis using the “reconstructed” data reveals a wavelength scale of approximately 20° of longitude, a distance nearly equal to the entire study domain, along with steady, westward phase propagation of SSF anomalies over approximately the same distance. Speed calculations for the westward-propagating features yield a value of approximately 1.2 to 2.4 cm s− 1 (1 to 2 km d− 1), with annual mean SSF anomalies thus requiring about 4 years to propagate from the Tail of the Grand Banks in the east to Cape Hatteras, North Carolina, in the west. This propagation speed and the timing of the SSF positional anomalies at the Tail of the Grand Banks for the 29-year study period are in agreement with speeds computed for the propagation of quasi-decadal salinity anomalies through the Labrador Sea and the time of their arrival at the Tail of the Grand Banks. The small westward SSF anomaly propagation speed is an order of magnitude smaller than the associated currents, in agreement with a highly damped flow-through system originating from both Davis Strait and the West Greenland Current as discussed by other workers. Observations from both southern and northern portions of the study domain, within both continental shelf and slope waters, show that interannual changes in the volume of shelf water along with shelf water bulk properties exhibit a strong relationship with IAV of the SSF position over long time periods.  相似文献   

11.
The water column above the Prestige wreckage was sampled during two consecutive campaigns: Prestinaut (December 2002) two weeks after the tanker sunk and HidroPrestige0303 (March 2003) one month after the sealing of the main fuel leaks. Samples of the original cargo fuel and the emulsified fuel in the surface of the ocean were also collected. Analysis of the fuel indicated the release of 135 kg of Cu, 1700 kg of Ni and 5300 kg of V from the original fuel to the water column, remaining 35 kg of Cu, 3100 kg of Ni and 13,800 kg of V in the emulsified fuel. The metal partitioning between the water column and the emulsioned floating fuel, Cu > Ni ~ V, are in accordance with the stability index for the metal–nitrogen bond in metalloporphyrins. This release had an impact on dissolved trace metal concentrations in the water column. An increase on dissolved copper (2.8–4.7 nM) and nickel (2.2–8.0 nM) with respect to natural values (1–3 nM for Cu and 1.6–5 nM for Ni) was observed. Values for vanadium (28–35 nM) were in the range of pristine North Atlantic waters (30–36 nM). This contamination was especially observed in the upper water column (0–50 m), associated with the mixing of seawater with the fuel moving upwards, and in deep waters, where the residence time of fuel is higher. Future research in this field should focus on the environmental variables and the processes that control the release of contaminants from fuels for a better assessment of the contamination in oil-spill events.  相似文献   

12.
In many parts of the world coastal waters with anthropogenic eutrophication have experienced a gradual depletion of dissolved silica (DSi) stocks. This could put pressure on spring bloom diatom populations, e.g. by limiting the intensity of blooms or by causing shifts in species composition. In addition, eutrophication driven enhanced diatom growth is responsible for the redistribution of DSi from the water phase to the sediments, and changes in the growth conditions may be reflected in the sediment diatom stratigraphy.To test for changes in diatom communities we have analyzed four sediment cores from the Baltic Sea covering approximately the last 100 years. The sediment cores originate from the western Gulf of Finland, the Kattegat, the Baltic Proper and the Gulf of Riga. Three out of the four cores reveal only minor changes in composition of diatom assemblages, while the Gulf of Riga core contains major changes, occurring after the second World War. This area is set apart from the other Baltic Sea basins by a high frequency of low after spring bloom DSi concentrations (< 2 µmol L− 1) during a relatively well defined time period from 1991–1998. In 1991 to 1993 a rapid decline of DSi spring concentrations and winter stocks (down to 5 µmol L− 1) in the Gulf was preceded by exceptionally intense diatom spring blooms dominated by the heavily silicified species Thalassiosira baltica (1991–1992; up to 5.5 mg ww L− 1). T. baltica has been the principal spring bloom diatom in the Gulf of Riga since records began in 1975. DSi consumption and biomass yield experiments with cultured T. baltica suggest that intense blooms can potentially exhaust the DSi stock of the water column and exceed the annual Si dissolution in the Gulf of Riga. The phytoplankton time series reveals another exceptional T. baltica bloom period in 1981–1983 (up to 8 mg L− 1), which, however, took place before the regular DSi measurements. These periods may be reflected in the conspicuous accumulation of T. baltica frustules in the sediment core corresponding to ca. 1975–1985.  相似文献   

13.
Effect of mixing on microbial communities in the Rhone River plume   总被引:1,自引:0,他引:1  
The biological processes involved during mixing of a river plume with the marine underlying water were studied off the Rhone River outlet. Samples of suspended and dissolved matter were collected while tracking a drifting buoy. Three trajectories were performed, at 2-day intervals, under different hydrological and meteorological situations. A biological uptake was evidenced from ammonium (NH4) and phosphate (PO4) shortage, indicating an early “NH4-dependent” functioning occurring before the well-known “NO3-based” cycle. The different ratios between NH4, NO3 and PO4, as a function of salinity, were discussed to detail the preferential use in PO4 and NH4. Salinity zones with enhanced bacterial production, high chlorophyll a concentration, as well as DOC, NH4 and PO4 consumption were evidenced from 20 to 35 in salinity. It was shown that the successive abundance of bacteria and phytoplankton during transfer reflected the competition for PO4 of both communities. On the Rhone River plume, the role played by temperature, light conditions and suspended matter upon biological activity seems relatively minor compared to salinity distribution and its related parameter: nutrient availability. It can be concluded that biological uptake in the Rhone River plume was closely related to the dilution mechanism, controlled itself by the dynamics of the plume. In windless conditions and close to the river mouth, the density gradient between marine and river water induced limited exchanges between the nutrient-rich freshwater and the potential consumers in the underlying marine water. Consequently, little biological activity is observed close to the river mouth. Offshore, mixing is enhanced and a balance is reached between salinity tolerance and nutrient availability to form a favourable zone for marine phytoplankton development. This can be quite far from the river mouth in case of a widely spread plume, corresponding to high river discharge. Under windy and wavy conditions, the plume freshwater is early and rapidly mixed, so that the extension of the “enhanced production zone” is drastically reduced and even bacteria could not benefit from the fast mixing regime induced.  相似文献   

14.
Methane release and coastal environment in the East Siberian Arctic shelf   总被引:1,自引:0,他引:1  
In this paper we present 2 years of data obtained during the late summer period (September 2003 and September 2004) for the East Siberian Arctic shelf (ESAS). According to our data, the surface layer of shelf water was supersaturated up to 2500% relative to the present average atmospheric methane content of 1.85 ppm, pointing to the rivers as a strong source of dissolved methane which comes from watersheds which are underlain with permafrost. Anomalously high concentrations (up to 154 nM or 4400% supersaturation) of dissolved methane in the bottom layer of shelf water at a few sites suggest that the bottom layer is somehow affected by near-bottom sources. The net flux of methane from this area of the East Siberian Arctic shelf can reach up to 13.7 × 104 g CH4 km− 2 from plume areas during the period of ice free water, and thus is in the upper range of the estimated global marine methane release. Ongoing environmental change might affect the methane marine cycle since significant changes in the thermal regime of bottom sediments within a few sites were registered. Correlation between calculated methane storage within the water column and both integrated salinity values (r = 0.61) and integrated values of dissolved inorganic carbon (DIC) (r = 0.62) suggest that higher concentrations of dissolved methane were mostly derived from the marine environment, likely due to in-situ production or release from decaying submarine gas hydrates deposits. The calculated late summer potential methane emissions tend to vary from year to year, reflecting most likely the effect of changing hydrological and meteorological conditions (temperature, wind) on the ESAS rather than riverine export of dissolved methane. We point out additional sources of methane in this region such as submarine taliks, ice complex retreat, submarine permafrost itself and decaying gas hydrates deposits.  相似文献   

15.
Argo is an international project that is deploying an array of temperature and salinity profiling floats over the global ocean. Here we use the error formulation derived from Optimal Statistical Interpolation to estimate statistical errors associated with the recovery of the temperature field in the North-East Atlantic ocean. Results indicate that with the present distribution of floats (119 in the considered domain), scales of wavelength larger than 500 km can be recovered with a relative uncertainty (rms error relative to the standard deviation of the field) of about 7% at 50 m, 8% at 200 m and 10% at 1000 m. This corresponds to mean absolute errors of 0.111 °C at 50 m, 0.104 °C at 200 m and 0.073 °C at 1000 m.The splitting of total errors into instrumental and sampling contributions reveals that, in the present scenario, errors are more due to the small number of floats than to instrumental errors, especially at upper levels. For scales larger than 500 km this will hold true until 200–250 floats are deployed (less than 200 for deep levels). In such a simulated scenario, the number of observations and the technology become approximately equally limiting factors for the accuracy of the temperature field mapping, with total relative errors of less than 2% at upper levels and about 3% at 1000 m.  相似文献   

16.
Seasonal SeaWiFS chlorophyll a concentrations cycles and annual changes of altimeter Sea Level Anomaly are derived for the subtropical North Atlantic near  35°N and along a Gulf Stream axis. Spatial structure of SeaWiFS, is defined in terms of deviations from a local seasonal cycle and examined in relation to altimeter eddy structure. In the subtropical region near 35°N, SeaWiFS structure is evident during the spring bloom period with a scale of  430 km, or about twice the eddy scale. A Gulf Stream axis has been selected as a region where the Sea Level Anomaly variance is a maximum. Eddy propagation speeds and scales are examined. Cold-core (cyclonic) rings correspond to areas of high SeaWiFS chlorophyll a. Warm-core (anticyclonic) rings relate to areas of low chlorophyll concentration. Both SeaWiFS structure and eddy structure have a spatial scale of  450 km or twice the ring scale along the Gulf Stream axis. SeaWiFS chlorophyll anomalies and Altimeter Sea Level Anomaly structure have an overall negative correlation coefficient of r = − 0.34. Swirl currents between eddies redistribute surface chlorophyll concentrations and can spatially bias maximum and minimum concentration levels off eddy centre.  相似文献   

17.
The hydrophysical and hydrochemical structure of the Sea of Azov, with developed bottom anoxia, was studied during the RV “Akvanavt” cruise from July 31 to August 03, 2001. The anoxic zone with a thickness from 0.5 to 4 m above the bottom was found in all deep regions of the Sea. Concentrations of hydrochemical parameters were similar to the pronounced anoxic conditions (about 90 mmol m− 3 of hydrogen sulfide, 17 mmol m− 3 of ammonia, 6 mmol m− 3 of phosphate, 7 mmol m− 3 of total manganese). The hydrophysical structure was characterized by the uniform distribution of temperature in the upper 6–7 m mixed layer (UML). Below this a thin (0.4–0.8 m) thermocline layer was observed, just above the anoxic waters. Formation of this phenomenon was connected with that summer weather conditions. Intensive rains led to increased influx of river waters in June. That resulted in large input of allochtonous organic matter (OM) and inorganic nutrients; the latter were consumed on the additional autochthonous organic matter production. In July the weather was characterized by a significant rise in the daily averaged air temperature and large oscillations of temperature during the day. In this period a wind of constant direction was absent, but wind bursts were observed. The completed analyses showed that the formation of such a structure could be connected with the following factors: (i) positive growth trends of the daily averaged temperature and the daily oscillations of temperature, (ii) presence of wind bursts. The joint action of these factors resulted in the formation of the UML. The amplitude of wind bursts determined the depth of UML, and the value of trend determined the value of the temperature change in the thermocline. An initial presence of bottom halocline (caused by the Black Sea water influx to the bottom of the Sea of Azov) prevented the heating of the bottom layer and therefore led to an increase of vertical gradient of temperature in the thermocline. The spatial distribution of the turbulent exchange coefficient confirmed the existence of a “stagnation” area located above the anoxia zone, which is also, apparently, the reason for its occurrence.  相似文献   

18.
Mercury (Hg) levels in the Beaufort Sea beluga population have been increasing since the 1990's. Ultimately, it is the Hg content of prey that determines beluga Hg levels. However, the Beaufort Sea beluga diet is not understood, and little is known about the diet Hg sources in their summer habitat. During the summer, they segregate into social groups based on habitat use leading to the hypothesis that they may feed in different food webs explaining Hg dietary sources. Methyl mercury (MeHg) and total mercury (THg) levels were measured in the estuarine-shelf, Amundsen Gulf and epibenthic food webs in the western Canadian Arctic collected during the Canadian Arctic Shelf Exchange Study (CASES) to assess their dietary Hg contribution. To our knowledge, this is the first study to report MeHg levels in estuarine fish and epibenthic invertebrates from the Arctic Ocean. Although the Mackenzie River is a large source of Hg, the estuarine-shelf prey items had the lowest MeHg levels, ranging from 0.1 to 0.27 μg/g dry weight (dw) in arctic cisco (Coregonus autumnalis) and saffron cod (Eleginus gracilis) respectively. Highest MeHg levels occurred in fourhorn sculpin (Myoxocephalus quadricornis) (0.5 μg/g dw) from the epibenthic food web. Beluga hypothesized to feed in the epibenthic and Amundsen Gulf food webs had the highest Hg levels matching with high Hg levels in associated food webs, and estuarine-shelf belugas had the lowest Hg levels (2.6 μg/g dw), corresponding with the low food web Hg levels, supporting the variation in dietary Hg uptake. The trophic level transfer of Hg was similar among the food webs, highlighting the importance of Hg sources at the bottom of the food web as well as food web length. We propose that future biomagnification studies incorporate predator behaviour with food web structure to assist in the evaluation of dietary Hg sources.  相似文献   

19.
The Dead Sea is a severely disturbed ecosystem. Its water level has been decreasing at a rate of nearly 1 m per year during the last decade due to anthropogenic intervention in its water balance. Since the peace treaty between Israel and Jordan was established in 1994, a proposal for the construction of a water carrier, the “Peace Conduit,” between the Gulf of Aqaba (Red Sea) and the Dead Sea is being investigated. This water carrier is intended to mitigate damaging processes that currently occur in the Dead Sea and its surrounding area. The difference in elevation of about 416 m could be exploited for seawater desalination by reverse osmosis. To examine the possible effects of the mixing of Dead Sea brines with seawater and seawater concentrates on the Dead Sea as an ecosystem, we have set up simulation experiments under field conditions in experimental ponds at Sedom, in which Dead Sea water was diluted with Red Sea water. The main components of the Dead Sea biota are the unicellular green alga Dunaliella and several types of red halophilic Archaea. Phosphate is the limiting inorganic nutrient. Massive Dunaliella blooms developed, accompanied by dense communities of red halophilic Archaea, in some of the experimental ponds, imparting a brown-red coloration to the brines. The extent of biological development depended on the extent of dilution and on phosphate availability. The results of the simulation experiments show that biological phenomena and their impact on the Dead Sea ecosystem should be taken into consideration during the planning of the “Peace Conduit.”  相似文献   

20.
Primary production events in both the Arctic and the Antarctic are highly localized. Carbon-14 incubations that did not account for this caused antarctic primary production estimates to be revised too far downwards from the historic view of high productivity. The primary production regime in the Arctic is even more heterogeneous than in the Antarctic. Arctic primary production rates are in the process of being revised upwards because of a better spatial and temporal distribution of incubation experiments and a re-awakening of interest in estimating new production from the distribution of chemical variables. Similarly, recent examination of temporal changes in nitrate concentrations and recognition of the importance of ice-edge blooms has caused antarctic primary productivity to be revised upwards. In both the Arctic and the Antarctic, the ratio of “new” to total primary production is high, and neglect of this fact can lead to an underestimation of the potential that these regions have for influencing global cycles of bioactive chemicals. Some recent data on temporal changes in nitrate from Fram Strait emphasize the poor state of our knowledge by suggesting an unexpectedly high “new” production rate of 1 g C m−2 d−1 for a 35 day experiment that encountered an early Phaeocystis bloom. Chemical distributions suggest that new production over the shelf seas that border the Polar Basin is about 50 g Cm−2 yr−1.The shelves in the Arctic Ocean's marginal and adjacent seas comprise 25% of the total global continental shelf. These extensive shallow regions have much higher rates of primary production than the Polar Basin and may be globally significant sites of denitrification. Globally significant silica deposition could occur on these shelves or on the adjacent slopes.Because of the differences in geomorphology and stratification, global warming is likely to increase primary production in the Arctic and will probably decrease antarctic primary production.In addition to sharing high ratios of “new” to total primary production, high ammonium concentrations occur in the Arctic and Antarctic. It is possible that these accumulations arise from a strong repression of nitrification at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号