首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
基于RANS方程和VOF模型求解船体粘性兴波流场,开展了小水线面双体船(Small Waterplane Area Twin Hulls,SWATH)迎浪规则波中纵向运动及波浪载荷的非线性特性研究.通过数值计算结果与模型试验结果的对比分析,验证了文中方法的有效性;在此基础上,较为系统地分析了SWATH船的垂荡及纵摇运动响应、垂向加速度和波浪载荷的一阶及二阶量随入射波高的变化规律,指出SWATH船的运动响应及载荷与波高存在非线性的关系,尤其体现在响应共振区附近;相比于船体垂荡和纵摇运动,垂向加速度及波浪载荷的非线性特性更为显著.  相似文献   

2.
The wave interaction with a submerged cylindrical payload subjected to constrained motions in presence of a nearby floating crane barge is investigated in the three-dimensional numerical wave tank using a fully nonlinear potential flow model in the time domain. Numerical simulations are carried out to investigate the hydrodynamic features of this submerged payload under pendulum motion in water waves as well as while it moves towards the sea bed at a constant vertical velocity. It is known that the presence of multiple side by side floating bodies in waves can create significant drift motion. In the present study the similar drift motion is observed for the side by side floating barge and submerged payload and it appears that the submerged payload under constrained motions may face a very large mean drift motion of nearly seven times that of the incident wave amplitude in the beam sea upstream condition. Emphasis is also given towards investigating and understanding the influences of natural frequency of the payload and shielding effect due to the presence of the floating barge. It is found that natural frequency coupled with shielding effect generates remarkable low frequency components in payload responses both in the head sea and the beam sea situations. The effect of different cable lengths, wave maker frequencies and downward moving velocities on payload responses under several geometric setups are studied and compared, and interesting features such as increased low frequency movement of the payload near the natural frequency region and existence of considerable low frequency motions even at a greater depth (while the payload is quite below the free surface) are observed.  相似文献   

3.
The distinctive feature of all ROFI (Regions Of Freshwater Influence) systems is the input of significant amounts of buoyancy as freshwater from river sources. If the spatial scale is unrestricted by coastal topography and stirring is weak, this input tends to drive a coast-parallel flow in which the Coriolis force constrains a wedge of low density water against the coastal boundary. Without frictional effects, this flow is subject to baroclinic instability which induces large meanders and eddies in the flow but in, many ROFIs, the tidal flow induces frictional effects which stabilise the density driven flow.In the absence of the effects of rotation and stirring, the buoyancy input tends to induce stratification through an estuarine circulation in the direction of the gradient. When stirring is applied, by the action of wind, waves or tidal flow, the density current is suppressed but is rapidly re-established when stirring ceases, as in the Linden-Simpson (1988) laboratory tank experiments. In real ROFI systems, a combination of all these processes operates so that the structure of the water column and the flow is the result of a competition between the stratifying influence of buoyancy input and the net stirring effect of the wind, waves and the tides. This competition is more difficult to analyse than the heating-stirring competition, because freshwater buoyancy input is not spatially uniform but enters at discrete sources along the coast and its subsequent spreading has to be determined.While the springs-neaps cycle in tidal stirring imposes a regular fortnightly modulation on vertical mixing, the influence of the wind is irregular and depends, not just on the magnitude of the stress, but also on the direction in which it acts. In some exposed shallow water situations there may also be significant stirring due to waves generated by non-local winds.ROFI systems are further complicated by the action of tidal straining in which differential advection, due to vertical shear in the tide, interacts with the density gradient to generate fluctuations in vertical stability at the tidal frequency which, in some cases, are of sufficient amplitude to switch the water column between stable stratification and vertical density homogeneity each tidal cycle. This straining along with the other ROFI processes have been incorporated into a series of 1-D models to provide a more objective test of the hypotheses about the mechanisms involved. Comparison of model hindcasts with observations indicate that we now have a first-order understanding of the complex behaviour of ROFIs.On a global scale it is clear that ROFIs represent an important component of the shelf-sea environment of particular concern in relation to the impact of pollutant discharges. To date, most studies of ROFI's have concentrated on systems in temperate latitudes but attention needs to be focused on the very extensive ROFIs in tropical regions where most of the world's river discharge enters the ocean. In monsoonal regions, these inputs exhibit strong seasonal modulation which may, in competition with tidal stirring, result in an annual cycle of stratification and the formation of fronts.  相似文献   

4.
迎浪规则波中波浪增阻和船体垂向运动的数值预报(英文)   总被引:1,自引:0,他引:1  
The numerical prediction of added resistance and vertical ship motions of one ITTC (International Towing Tank Conference) S-175 containership in regular head waves by our own in-house unsteady RANS solver naoe-FOAM-SL JTU is presented in this paper. The development of the solver naoe-FOAM-SJTU is based on the open source CFD tool, OpenFOAM. Numerical analysis is focused on the added resistance and vertical ship motions (heave and pitch motions) with four very different wavelengths (0.8Lpp≤λ≤1.5Lpp) in regular head waves. Once the wavelength is near the length of the ship model, the responses of the resistance and ship motions become strongly influenced by nonlinear factors, as a result difficulties within simulations occur. In the paper, a comparison of the experimental results and the nonlinear strip theory was reviewed and based on the findings, the RANS simulations by the solver naoe-FOAM-SJTU were considered competent with the prediction of added resistance and vertical ship motions in a wide range of wave lengths.  相似文献   

5.
《Marine Structures》2003,16(4):323-344
A nonlinear time-domain simulation method is presented for the prediction of dynamic global wave loads on a Ro-Ro ship at zero speed in regular oblique waves in an intact and a damaged condition. Numerical computations and model tests have been carried to investigate the structural responses of Ro-Ro ship Dextra to various wave amplitudes at three different wave headings (DTR-4.1-NEW-12.98, DEXTREMEL project BE97-4375, 1998; DTR-4.2-NEW-11.99, DEXTREMEL project BE97-4375, 1999). The results of numerical and experimental investigations for stern quartering waves are reviewed. Comparisons between predictions and measurements for global wave loads at the midship section of the intact and the damaged Ro-Ro ship show that the agreement between the theory and experiment for dynamic horizontal and vertical bending moments is excellent. On the other hand, correlation between the predictions and measurements for dynamic vertical shear force is better than that for dynamic horizontal shear force. Nevertheless, the calculated torsion moment values are higher than the measured values. As the wave amplitude is not small, the positive and negative peaks of global wave loads are no longer equal to each other as found in both the calculations and experiments. The dynamic vertical global wave loads in the damaged condition are larger than that in the intact condition.  相似文献   

6.
系泊多浮体系统流固耦合和浮体间耦合动力分析   总被引:6,自引:1,他引:5  
沈庆  陈徐均 《中国造船》2002,43(2):81-84
利用多刚体力学运动学方法进行系统铁数学描述。以系统摇荡时各浮体质心位移和浮体角位移表达广义速率。进而表达出有关偏速度、偏角速度、加速度和角加速度。单个系泊浮体在规则波作用下,所受的流体动压力用势流理论计算。多浮体系统摇荡时除入射规则波外,每一浮体的摇荡辐射波对其他浮体也构成了入射波并作用以流体动压力。表达出系统的广义主动力和广义惯性力后代入Kane方程,补充以浮体间的运动约束方程,消去时间因子后得到求解各浮体质心位移和浮体角位移的复数线性代数方程组。  相似文献   

7.
许国春  石凡 《船舶工程》2018,40(3):78-81
利用细长体公式和刚体非线性运动方程建立Truss SPAR在波浪与流中运动响应预报方法。通过波浪自由表面和SPAR中心线方程构造辅助函数,迭代计算Truss SPAR瞬时湿长度。根据SPAR主体形状特点和流场中水质点运动规律,分段高效积分Truss SPAR上的水动力载荷。通过Runge-Kutta-Fehlberg方法求解运动方程,得Truss SPAR在波浪与流中的运动响应。对一座Truss SPAR在不同波流工况中的运动响应进行了预报,结果显示波浪和流使Truss SPAR产生了明显漂移运动和振荡运动,漂移运动的大小与流的方向有关,而振荡运动的幅值与波浪的方向有关。  相似文献   

8.
对现场观测的苏南运河镇江段船行波相关资料采用物理模型试验进行了验证,并分析比较了500 t和1000 t货船在不同载重、不同航行线路情况下在直立岸壁附近产生的船行波最大波高与航行速度的关系,相关数据可供设计参考。  相似文献   

9.
Ground-effect vehicles flying close to water or ground often employ ram wings which generate aerodynamic lift primarily on their lower surfaces. The subject of this paper is the 3-DOF modeling of roll, heave, and pitch motions of such a wing in the presence of surface waves and other ground non-uniformities. The potential-flow extreme-ground-effect theory is applied for calculating unsteady pressure distribution under the wing which defines instantaneous lift force and moments. Dynamic simulations of a selected ram wing configuration are carried out in the presence of surface waves of various headings and wavelengths,as well as for transient flights over a ground obstacle. The largest amplitudes of the vehicle motions are observed in beam waves when the periods of the encounter are long. Nonlinear effects are more pronounced for pitch angles than for roll and heave. The present method can be adapted for modeling of air-supported lifting surfaces on fast marine vehicles.  相似文献   

10.
The ship motions and wave-induced loads of a new type of river-to-sea ship are investigated experimentally and numerically. A river-to-sea ship is an unconventional type of container ship characterized by high breadth to draft ratio and low length to breadth ratio, which makes it more prone to hydroelasticity than conventional ships of the same size. A segmented model was tested under two loading conditions, namely, ballast and loaded conditions, to determine the vertical motions and wave-induced loads under each condition. Results are compared with numerical simulations in the frequency domain. The wave-induced responses are calculated by a nonlinear time domain code at each time step. The response amplitude operators of vertical ship responses in regular waves are analyzed, and the wave-induced responses are consistent with the experimental results.  相似文献   

11.
12.
A finite-difference scheme and a marker-and-cell (MAC) method are used for numerical wave tank (NWT) simulations to investigate the characteristics of nonlinear wave motions and their interactions with a stationary three-dimensional body in the presence of steady uniform currents. The Navier–Stokes (NS) equation is solved in the computational domain, and the boundary values are updated at each time-step by a finite-difference time-marching scheme in the frame of a rectangular coordinate system. The fully nonlinear kinematic free-surface condition is satisfied by the marker–density function technique developed for two fluid layers. The incident waves are generated from the inflow boundary by prescribing a velocity profile resembling the motions of a flexible flap wavemaker, and the outgoing waves are numerically dissipated inside an artificial damping zone located at the end of the tank. Using the NS–MAC NWT, nonlinear wave and current interactions around a stationary vertical truncated circular cylinder are studied, and the results are compared with the experimental results of Mercier and Niedzwecki, a time-domain NWT based on linear potential theory, a fully nonlinear NWT, and a second-order diffraction computation. Received: July 3, 2001 / Accepted: September 25, 2001  相似文献   

13.
利用源汇分布法计算双体(或多体)剖面的水动力系数,在此基础上,对二维切片理论在双体船的垂向运动和波浪载荷预报上的应用进行了拓展,考虑了流体粘性的作用,比较了不同航速、不同片体间距和片体间水动力相互干扰等因素对运动和载荷预报的影响.算例结果表明,该方法能较好地预报双体船在规则波中的运动响应和波浪载荷.  相似文献   

14.
A vessel's response to waves is dependent on a large number of parameters, some of which are both frequency and direction dependent. To predict vessel response, these parameters are used to construct response amplitude operators (RAOs) that act as transfer functions between the directional wave spectra and the motion spectra of the vessel. In particular situations, however, vessel motions predicted using RAOs calculated with general-purpose radiation-diffraction codes and measured wave spectra are found to deviate from measured vessel responses. To address this problem, a methodology for calibrating RAOs based on measurements of the directional wave spectra and vessel motions is proposed. Use is made of a vector fitting method through which the frequency dependent hydrodynamic properties of the vessel can be approximated by a ratio of two polynomials, thus greatly reducing the number of parameters that need to be calibrated. The reduced set of parameters is subsequently related to previously identified causes of RAO inaccuracy in order to arrive at optimization algorithms for identifying more accurate RAOs from the measurements. It is shown that the RAOs can be improved with accuracy in situations where the discrepancies are caused by imprecise estimates for the vessel's radii of gyration, center of gravity, or viscous damping. When the discrepancies in the RAOs are related to the potential mass, damping and wave forces, however, the problem becomes highly non-convex and it is not possible to find a unique RAO that satisfies the data.  相似文献   

15.
Interactions of a vertical elastic plate with fully nonlinear water waves were simulated. Utilizing the mixed Eulerian Lagrangian method for the free-surface flow and the finite element method for the deflection of an elastic plate, a fully coupled scheme for accurately determining fluid–plate motions was developed. Using this scheme, some modifications to the solvers for both fluid and plate were made. A hybrid wave-absorbing beach was installed to prevent wave reflection from the end of the wave tank. A fourth-order Runge–Kutta time-marching scheme with a uniform time step was applied to achieve numerical stability. The method was validated by simulating the wave generated by the initial deformation of a vertical plate and comparing the result with the corresponding analytical solution. For further validation, the hydroelastic behavior of a vertical plate induced by a pulse-type wave (where the initial pulse-type elevation of the free surface is specified) was computed, and the result was compared with another numerical result from a mode-expansion method. The interaction of a surface-piercing plate with nonzero initial free surface was then simulated, and the result was compared with the corresponding linear analytical solution. Finally, the hydroelastic response of a surface-piercing vertical plate due to a solitary wave (generated by actuating the vertical plate at the right end of the tank only at the beginning) was computed and investigated systematically.  相似文献   

16.
针对被动翼复合船型,采用模型试验方法,开展阻力和耐波性模型试验,分析一对首水翼和一型 T型翼对阻力和垂向运动的综合影响。试验结果表明,加装被动翼之后,中低速时静水阻力增幅较大,高速时静水阻力增幅减缓;在1倍波长船长比附近,纵摇、垂荡、首尾垂向加速度大幅减小;波浪增阻显著降低。综合而言,被动翼复合船型在风浪中航行时,快速性与原船型相当,耐波性大幅提升,对改善船员舒适性和船上设备使用环境具有有益效果。  相似文献   

17.
水面舰船迎浪航行时大幅运动预报的切片算法   总被引:4,自引:0,他引:4  
将预报船舶运动和波浪载荷的切片理论加以扩展,应用于有限深水中船舶迎浪航行时大幅纵向运动和波浪载荷的时域求解。预报结果体现出考虑了湿表面及化后引起的船舶运动和受力的非线性性质。本计算方法简便、实用,适用于船舶纵向大幅运动预报。  相似文献   

18.
Large-eddy simulations (LES) of the interactions between turbulent shear flow and surface waves are presented. The formation mechanism of Langmuir circulation and its contribution to the vertical momentum transport are investigated in detail. The effect of surface waves is modeled in two ways in the LES runs. One model includes only the phase-averaged effect of the waves as an added source term in the momentum equation, and the other model includes the full effect of the waves by use of the fully nonlinear conditions of the air-water interface. Langmuir circulations are clearly indicated in both cases, indicating that the phase-averaged effect is essential for the formation of this circulation. It is shown that the formation of Langmuir circulations enhances the vertical transport of momentum. As a result, the mean velocity gradient and the streamwise component of the turbulence intensity are decreased, while the spanwise and interface normal components are increased. Examination of the turbulence energy budget equations shows that production is due to the interaction between the vorticity and the Lagrangian drift as the phase-averaged effect of the wave becomes the dominant source of turbulence. Received: August 17, 2000 / Accepted: December 22, 2000  相似文献   

19.
Shortcomings of the traditionally used nonlinear restoring stiffness of TLPs, i.e. unrealistically high stiffness of horizontal motions, their uncoupling and secant formulation are pointed out. Therefore, new consistent restoring stiffness is derived. The platform is considered as a rigid body moored by flexible pretensioned tendons. Global horizontal low frequency motions (surge, sway and yaw) with large amplitudes as a result of dominant second order wave excitation and small stiffness, and vertical local motions (heave, roll and pitch) of higher frequency and small amplitudes excited by the first order wave forces, are distinguished. Hence, horizontal displacements represent position parameters in analysis of vertical motions. First, the linear restoring stiffness, which consists of the tendon conventional axial stiffness, the tendon geometric stiffness and the platform hydrostatic stiffness, is established. Then it is extended to large displacements resulting in new secant restoring stiffness. It depends on surge, sway and yaw displacements and is the same in any horizontal direction. Also, the tangent stiffness, which gives more accurate results, is derived. Heave is defined as vertical projection of axial tendon vibrations and platform tangential oscillations, which are analyzed in their natural moving coordinate system. Inertia force due to setdown, as a slave d.o.f. of the master horizontal motions, is taken into account in the dynamic equilibrium equations. As a result the complete tangential stiffness matrix of horizontal and vertical motions includes 7 d.o.f. The known secant restoring stiffness matrices are compared with the new one and noticed differences are discussed. All theoretical contributions are illustrated by relatively simple numerical example.  相似文献   

20.
This paper presents a study on the numerical simulation of planing crafts sailing in regular waves. This allows an accurate estimate of the seas keeping performance of the high speed craft. The simulation set in six-degree of freedom motions is based on the Reynolds averaged Navier Stokes equations volume of fluid (RANSE VOF) solver. The trimming mesh technique and integral dynamic mesh method are used to guarantee the good accuracy of the hydrodynamic force and high efficiency of the numerical simulation. Incident head waves, oblique waves and beam waves are generated in the simulation with three different velocities (Fn =1.0, 1.5, 2.0). The motions and sea keeping performance of the planing craft with waves coming from different directions are indicated in the flow solver. The ship designer placed an emphasis on the effects of waves on sailing amplitude and pressure distribution of planing craft in the configuration of building high speed crafts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号