首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
介绍了用中频淬火局部增强轮缘表面度的方法和提高机车车轮使用寿命研究情况,工艺试验结果表明,轮缘表面金相组织细化,硬度提高,韧性更性,没有裂纹,提高了轮缘的耐性;装车试验表明,经中频淬火的机车车化寿命可提高2-3倍。  相似文献   

2.
所谓复合表面改性法,是一种可在大气环境中进行处理的简易工艺,它组合了两种喷丸强化处理方法,即使用硬质粒子的微粒子喷丸处理及使用固体润滑材料的固体润滑剂喷丸处理。由于车轮轮缘部的磨耗引起的车轮形状变化,会对列车运行稳定性及安全性产生影响,所以要求减低轮缘磨耗。该文献介绍了在车轮轮缘部与小半径曲线段的钢轨问产生高表面压力、高滑动接触的条件下,以降低轮缘磨耗为目标,利用室内基础试验,  相似文献   

3.
本文介绍了用等离子体对机车车辆的车轮轮缘进行强化处理的工艺。采用这种工艺后,能使车轮轮缘的磨损降低33%~66%。  相似文献   

4.
大秦铁路货车车轮磨耗问题的调查与研究   总被引:2,自引:0,他引:2  
通过对重载货运专线——大秦铁路运行的货车车轮磨耗数据的统计、分析和对铁路货车运用中出现的闸瓦磨耗等问题的分析,将影响铁路重载运输货车车轮磨耗的主要因素归结为:货车轴重、货物周转量、闸瓦质量、车轮硬度及同一轮对两车轮的轮径差。采用车辆动力学仿真方法,研究车轮轮缘磨耗与踏面磨耗间的关系。结论表明,推广应用新型C级钢车轮以提高车轮踏面及轮辋硬度、控制同一轮对两车轮的轮径差、研制新型高摩合成闸瓦等措施是降低车轮踏面磨耗并使车轮踏面磨耗均匀化的有效途径;铁路货车采用状态修的维修管理办法是控制和降低轮缘磨耗发生的有效手段。  相似文献   

5.
基于喷丸强化及固体润滑覆膜的表面改性,以提高车轮轮缘与钢轨轨距角部位(指两者接触部位)的耐磨特性为目标,利用试验室基础试验,对铁道车辆车轮实体模型轮缘部进行表面改性加工,准静态地再现了轮缘与钢轨轨距角部的接触形态,确认了固体润滑覆膜有利于提高耐磨特性,能有效发挥固体润滑功能.  相似文献   

6.
车轮轮缘接触应力与影响因素的研究   总被引:5,自引:0,他引:5  
本文用赫兹理论计算了车轮轮缘接触应力,研究了车轮侧压力与轮缘根部圆弧半径对轮缘接触应力的影响,给出了各种计算工况下的数值解,为分析轮缘磨耗与车轮型面优化设计提供了理论依据。  相似文献   

7.
上海地铁4号线车轮轮缘异常磨耗原因分析及解决措施   总被引:3,自引:0,他引:3  
王生华 《铁道车辆》2007,45(6):32-34
介绍了上海地铁4号线车轮的材料、机械性能、轮缘异常磨耗等情况,研究了轮轨系统不稳定、环行线路、车轮及轨道硬度匹配以及一系定位刚度等对车轮异常磨耗的影响,并提出了提高车轮硬度、列车定期换端运营以及安装轮缘润滑装置等解决措施。  相似文献   

8.
针对长春市轨道交通3号线和4号线的车轮磨耗问题,通过跟踪测试车轮的廓形和硬度,统计分析了70%低地板轻轨车辆的车轮磨耗特征和季节性因素的影响。研究结果表明:与4号线相比,3号线轻轨列车车轮磨耗和硬度测试状况更差;动车整体轮对车轮踏面和拖车独立轮对车轮轮缘为磨耗严重区域;气温较低的秋冬季节的车轮踏面和轮缘磨耗状况均差于气温较高的春夏季节,说明低温更易导致车轮钢材的磨损。  相似文献   

9.
针对运用中因轨距减小而导致轮缘磨加剧的问题,设计并试验了统一型减薄轮缘厚度的修理用车轮踏面外形,试验表明,对减少轮缘磨耗,延长车轮使用寿命均有明显效果。  相似文献   

10.
轮对轮缘通过等离子淬火可提高金属的疲劳强度,因而也就相应提高了机车轮对的使用寿命和稳定性能.经等离子强化的车轮轮缘的磨耗量为一般轮缘磨耗量的2/5~1/3."ТОПАС"科研生产企业研究开发出了一种强化工艺,该强化工艺可对每一轮对作全面而彻底的强化.  相似文献   

11.
本文介绍了对机车整体辗钢轮和轮箍使用超声波检测法的情况,并介绍同时使用电磁-声学激发-接收弹性波法对残余应力进行检测的方法。列出了经强化的轮缘表面和套装的轮箍在车轮踏面强化前和电接触强化之后的残余应力的测定结果。  相似文献   

12.
碳含量对车轮钢滚动摩擦磨损性能影响   总被引:1,自引:0,他引:1  
利用MMS-2A型微机控制摩擦磨损试验机研究碳含量对车轮钢滚动摩擦磨损性能影响。结果表明:碳含量对车轮材料滚动摩擦系数基本无影响;随碳含量增加车轮钢硬度增加,耐磨性增强导致磨损量降低;车轮硬度增加导致对摩擦副钢轨试样磨损量增加,且轮轨试样总磨损量呈现增加趋势;车轮与钢轨试样两者损伤形态存在一定差异;碳含量为0.64%时车轮钢容易发生小块剥落损伤,而0.5%含碳量时容易发生大块状的剥落;钢轨试样主要表现为表面剥层损伤。  相似文献   

13.
机车车辆车轮轮缘在循环载荷和冲击作用下,会产生轮缘伤损。通过声路分析、人工伤损设计制作、超声工艺试验,提出机车车轮轮缘径向裂纹自动化探伤设备超声检测工艺,即用70°横波斜探头偏斜一定角度放置于踏面距轮外侧面44 mm处,对车轮轮缘径向裂纹进行超声波检测。当选取10°偏斜角时,此工艺可以有效检出直径为950 mm~1 250 mm的车轮轮缘部位深度大于5 mm的径向伤损。  相似文献   

14.
为了解决内侧减速顶对调车机车轮缘顶部的磨耗,研制了适合内侧减速顶编组场上的调车机车采用DJND型轮缘踏面外形。该外形比TB型车轮有很大改进,轮缘顶部、内侧面、外侧面、轮缘根部、踏面等部位的形状及轮缘高度、轮缘厚度进行了合理设计,从而大大延缓了减速顶对轮缘顶部的磨耗和钢轨对其它部位的磨耗,制定了DJND型车轮安全可靠的运用限度,主要是补充了轮缘高度和尖点避开距离的限度。  相似文献   

15.
对国内某地铁线路的车轮磨耗规律进行了现场调查和分析。车轮磨耗集中于轮缘根部和踏面-25~30 mm范围。LM32模板动车车轮踏面磨耗突出区为-8~-4 mm,25万~40万km里程车轮最大磨耗量为2.5~4.0 mm。采用薄轮缘LM30模板镟轮的拖车车轮踏面磨耗集中在-10~10mm范围,19万km以内里程踏面磨耗量为0.2~0.5 mm。利用轮轨接触几何理论和轮轨滚动接触理论,研究不同车轮磨耗状态下的轮轨静态匹配性能,包括接触点对分布和轮轨接触应力,分析车轮表面裂纹的机理。车轮轮缘根部与钢轨轨距角集中接触容易导致接触光带偏向轨距角。轮缘根部及踏面上小曲率半径区与钢轨集中接触是产生车轮踏面接触疲劳的主要原因。  相似文献   

16.
文内提出了评估机车轮对磨损的模型和分析关系式。用这种方法得出的轮箍轮缘表面的计算磨损范围与全俄内燃机车科学研究院的试验数据完全吻合。  相似文献   

17.
为了研究不同材质闸瓦和车轮滑动摩擦磨损性能,采用M2000型摩擦磨损试验机,针对4种材质闸瓦摩擦块与车轮钢摩擦环摩擦副,开展滑动摩擦磨损试验,试验结果表明,4种材质闸瓦摩擦块对车轮钢的体积磨损量由大到小对应的材质依次为钢轨钢、粉末冶金闸瓦、合成闸瓦、铸铁闸瓦。用扫描电镜观察4种材质闸瓦摩擦块和车轮钢摩擦环摩擦磨损试验后的摩擦环表面形貌,结果显示,摩擦环表面均出现磨粒磨损和疲劳磨损,LH2型高摩擦系数合成闸瓦和QU70型钢轨钢对车轮钢的磨损以磨粒磨损为主,高磷铸铁闸瓦和M型粉末冶金闸瓦对车轮钢的磨损以疲劳磨损为主。用能谱仪测试4种材质闸瓦摩擦块和车轮钢摩擦环摩擦磨损试验后的摩擦环表面元素,结果显示,摩擦环表面均发生氧化反应,出现闸瓦材料向车轮钢转移现象。  相似文献   

18.
文章通过梳理城市轨道交通车轮所采用的主要材质,系统分析车轮损伤的类型、表现特征、影响因素、引发后果等,重点讨论严重困扰城市轨道交通用车轮的偏磨、轮缘异常磨耗、异常“凹”型磨耗、“双坑”磨耗、车轮周向不均匀磨耗等问题,结合分析损伤车轮微观组织性能,开展模拟实验,实验结果表明:偏磨、轮缘异常磨耗、异常“凹”型磨耗、“双坑”磨耗与线路条件、车辆状态、轮轨匹配关联较大;车轮偏心与车轮初始缺陷、轮对组装、镟修等因素有关,车轮3边形与镟床镟修模式相关性较大,车轮5~8 边形、11~13边形与轮对一阶弯曲、P2共振相关性较大。最终所得结论为基于目前城市轨道交通轮轨匹配状况,根据运用需求,提高车轮轮辋硬度、缩小轮辋断面径向硬度差、增加磨耗到限深度是延缓车轮异常磨耗、延长车轮使用寿命的重要技术方向。  相似文献   

19.
为了研究轮缘润滑对车轮磨耗的影响效果,对国内某地铁线路安装轮缘润滑器的列车和未安装轮缘润滑器的列车的车轮磨耗进行了跟踪测试。结果表明,该线路地铁车轮轮缘磨耗分布在-40~-30 mm位置范围内,主要集中在轮缘根部,踏面磨耗分布在-30~60 mm位置范围内;轮缘润滑对车轮的轮缘厚度、轮缘高度及踏面磨耗速率影响较小,且对踏面为LM30的拖车轮缘磨耗速率的影响也较小,但能极大地减缓踏面为LM32的动车和拖车车轮轮缘磨耗。仅在动车上安装轮缘润滑器时,减磨效果能达到24%,而在整列车(包含动车和拖车)安装轮缘润滑器时,减磨效果则能达到36%。针对所调查的地铁线路实际情况,建议整列车均保留轮缘润滑器。  相似文献   

20.
铁道车辆在运行过程中,由于制动作用车轮踏面会造成金属剥离、裂纹等缺陷,而这些缺陷的扩展会引发车轮表面强度、疲劳强度、塑性、冲击韧性和耐久性的下降。为解决这一问题,除提高冶金质量外,都采用在车轮外圆镟修后对磨损的轮轮缘实施焊剂下弧焊堆焊工艺。文章介绍了车轮踏面退火处理后对轮缘进行堆焊的经验、具体的工艺过程及其效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号