首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
Real-time estimation of the traffic state in urban signalized links is valuable information for modern traffic control and management. In recent years, with the development of in-vehicle and communication technologies, connected vehicle data has been increasingly used in literature and practice. In this work, a novel data fusion approach is proposed for the high-resolution (second-by-second) estimation of queue length, vehicle accumulation, and outflow in urban signalized links. Required data includes input flow from a fixed detector at the upstream end of the link as well as location and speed of the connected vehicles. A probability-based approach is derived to compensate the error associated with low penetration rates while estimating the queue tail location, which renders the proposed methodology more robust to varying penetration rates of connected vehicles. A well-defined nonlinear function based on traffic flow theory is developed to attain the number of vehicles inside the queue based on queue tail location and average speed of connected vehicles. The overall scheme is thoroughly tested and demonstrated in a realistic microscopic simulation environment for three types of links with different penetration rates of connected vehicles. In order to test the efficiency of the proposed methodology in case that data are available at higher sampling times, the estimation procedure is also demonstrated for different time resolutions. The results demonstrate the efficiency and accuracy of the approach for high-resolution estimation, even in the presence of measurement noise.  相似文献   

2.
This study addresses the impacts of automated cars on traffic flow at signalized intersections. We develop and subsequently employ a deterministic simulation model of the kinematics of automated cars at a signalized intersection approach, when proceeding forward from a stationary queue at the beginning of a signal phase. In the discrete-time simulation, each vehicle pursues an operational strategy that is consistent with the ‘Assured Clear Distance Ahead’ criterion: each vehicle limits its speed and spacing from the vehicle ahead of it by its objective of not striking it, regardless of whether or not the future behavior of the vehicle ahead is cooperative. The simulation incorporates a set of assumptions regarding the values of operational parameters that will govern automated cars’ kinematics in the immediate future, which are sourced from the relevant literature.We report several findings of note. First, under a set of assumed ‘central’ (i.e. most plausible) parameter values, the time requirement to process a standing queue of ten vehicles is decreased by 25% relative to human driven vehicles. Second, it was found that the standard queue discharge model for human–driven cars does not directly transfer to queue discharge of automated vehicles. Third, a wet roadway surface may result in an increase in capacity at signalized intersections. Fourth, a specific form of vehicle-to-vehicle (V2V) communications that allows all automated vehicles in the stationary queue to begin moving simultaneously at the beginning of a signal phase provides relatively minor increases in capacity in this analysis. Fifth, in recognition of uncertainty regarding the value of each operational parameter, we identify (via scenario analysis, calculation of arc elasticities, and Monte-Carlo methods) the relative sensitivity of overall traffic flow efficiency to the value of each operational parameter.This study comprises an incremental step towards the broader objective of adapting standard techniques for analyzing traffic operations to account for the capabilities of automated vehicles.  相似文献   

3.
How to estimate queue length in real-time at signalized intersection is a long-standing problem. The problem gets even more difficult when signal links are congested. The traditional input–output approach for queue length estimation can only handle queues that are shorter than the distance between vehicle detector and intersection stop line, because cumulative vehicle count for arrival traffic is not available once the detector is occupied by the queue. In this paper, instead of counting arrival traffic flow in the current signal cycle, we solve the problem of measuring intersection queue length by exploiting the queue discharge process in the immediate past cycle. Using high-resolution “event-based” traffic signal data, and applying Lighthill–Whitham–Richards (LWR) shockwave theory, we are able to identify traffic state changes that distinguish queue discharge flow from upstream arrival traffic. Therefore, our approach can estimate time-dependent queue length even when the signal links are congested with long queues. Variations of the queue length estimation model are also presented when “event-based” data is not available. Our models are evaluated by comparing the estimated maximum queue length with the ground truth data observed from the field. Evaluation results demonstrate that the proposed models can estimate long queues with satisfactory accuracy. Limitations of the proposed model are also discussed in the paper.  相似文献   

4.
The analysis, assessment and estimation of noise levels in the vicinity of intersections is a more complex problem than a similar analysis for roads and streets. This is due to the varied geometry of the intersections, differences in the loads of individual movements, participation of heavy vehicles and mass transport vehicles, as well as the various types of traffic management and traffic control. This article analyses the influence of intersection type and traffic characteristics on the noise levels in the vicinity of classic channelized intersections with signalization, roundabouts and signalized roundabouts. Based on the conducted measurements, it has been established that, with comparable traffic parameters and the same distance from the geometric centre of the intersection, the LAeq value for signalized roundabouts is 2.5–10.8 dB higher in comparison to classic channelized intersections with signalization and 3.3–6.7 dB higher in relations to the analysed roundabout. Additionally the differences between LAeq levels at individual entries at the same signalized roundabouts may reach the value of approximately 4.5 dB. Such situation is influenced by differences in the intersection geometry, diameter of the intersection’s central island, traffic flow type, traffic management at the entries and traffic volume, especially the amount and traffic movements of multiple axle heavy vehicles. These factors have been analysed in detail in relation to signalized roundabouts in this paper.  相似文献   

5.
We study how to estimate real time queue lengths at signalized intersections using intersection travel times collected from mobile traffic sensors. The estimation is based on the observation that critical pattern changes of intersection travel times or delays, such as the discontinuities (i.e., sudden and dramatic increases in travel times) and non-smoothness (i.e., changes of slopes of travel times), indicate signal timing or queue length changes. By detecting these critical points in intersection travel times or delays, the real time queue length can be re-constructed. We first introduce the concept of Queue Rear No-delay Arrival Time which is related to the non-smoothness of queuing delay patterns and queue length changes. We then show how measured intersection travel times from mobile sensors can be processed to generate sample vehicle queuing delays. Under the uniform arrival assumption, the queuing delays reduce linearly within a cycle. The delay pattern can be estimated by a linear fitting method using sample queuing delays. Queue Rear No-delay Arrival Time can then be obtained from the delay pattern, and be used to estimate the maximum and minimum queue lengths of a cycle, based on which the real-time queue length curve can also be constructed. The model and algorithm are tested in a field experiment and in simulation.  相似文献   

6.
As mobile traffic sensor technology gets more attention, mathematical models are being developed that utilize this new data type in various intelligent transportation systems applications. This study introduces simple analytical estimation models for queue lengths from tracked or probe vehicles at traffic signals using stochastic modeling approach. Developed models estimate cycle-to-cycle queue lengths by using primary parameters such as arrival rate, probe vehicle proportions, and signal phase durations. Valuable probability distributions and moment generating functions for probe information types are formulated. Fully analytical closed-form expressions are given for the case ignoring the overflow queue and approximation models are presented for the overflow case. Derived models are compared with the results from VISSIM-microscopic simulation. Analytical steady-state and cycle-to-cycle estimation errors are also derived. Numerical examples are shown for the errors of these estimators that change with probe vehicle market penetration levels, arrival rates, and volume-to-capacity ratios.  相似文献   

7.
In this study, we develop a real-time estimation approach for lane-based queue lengths. Our aim is to determine the numbers of queued vehicles in each lane, based on detector information at isolated signalized junctions. The challenges involved in this task are to identify whether there is a residual queue at the start time of each cycle and to determine the proportions of lane-to-lane traffic volumes in each lane. Discriminant models are developed based on time occupancy rates and impulse memories, as calculated by the detector and signal information from a set of upstream and downstream detectors. To determine the proportions of total traffic volume in each lane, the downstream arrivals for each cycle are estimated by using the Kalman filter, which is based on upstream arrivals and downstream discharges collected during the previous cycle. Both the computer simulations and the case study of real-world traffic show that the proposed method is robust and accurate for the estimation of lane-based queue lengths in real time under a wide range of traffic conditions. Calibrated discriminant models play a significant role in determining whether there are residual queued vehicles in each lane at the start time of each cycle. In addition, downstream arrivals estimated by the Kalman filter enhance the accuracy of the estimates by minimizing any error terms caused by lane-changing behavior.  相似文献   

8.
Information from connected vehicles, such as the position and speed of individual vehicles, can be used to optimize traffic operations at an intersection. This paper proposes such an algorithm for two one-way-streets assuming that only a certain percentage of cars are equipped with this technology. The algorithm enumerates different sequences of cars discharging from the intersection to minimize the objective function. Benefits of platooning (multiple cars consecutively discharging from a queue) and signal flexibility (adaptability to demand) are also considered. The goal is to gain insights about the value (in terms of delay savings) of using connected vehicle technology for intersection control.Simulations are conducted for different total demand values and demand ratios to understand the effects of changing the minimum green time at the signal and the penetration rate of connected cars. Using autonomous vehicle control systems, the signal could rapidly change the direction of priority without relying on the reaction of drivers. However, without this technology a minimum green time is necessary. The results of the simulations show that a minimum green time increases the delay only for the low and balanced demand scenarios. Therefore, the value of using cars with autonomous vehicle control can only be seen at intersections with this kind of demand patterns, and could result in up to 7% decrease in delay. On the other hand, using information from connected vehicles to better adapt the traffic signal has proven to be indeed very valuable. Increases in the penetration rate from 0% up to 60% can significantly reduce the average delay (in low demand scenarios a decrease in delay of up to 60% can be observed). That being said, after a penetration rate of 60%, while the delays continue to decrease, the rate of reduction decreases and the marginal value of information from communication technologies diminishes. Overall, it is observed that connected vehicle technology could significantly improve the operation of traffic at signalized intersections, at least under the proposed algorithm.  相似文献   

9.
This paper demonstrates the capabilities of wavelet transform (WT) for analyzing important features related to bottleneck activations and traffic oscillations in congested traffic in a systematic manner. In particular, the analysis of loop detector data from a freeway shows that the use of wavelet-based energy can effectively identify the location of an active bottleneck, the arrival time of the resulting queue at each upstream sensor location, and the start and end of a transition during the onset of a queue. Vehicle trajectories were also analyzed using WT and our analysis shows that the wavelet-based energies of individual vehicles can effectively detect the origins of deceleration waves and shed light on possible triggers (e.g., lane-changing). The spatiotemporal propagations of oscillations identified by tracing wavelet-based energy peaks from vehicle to vehicle enable analysis of oscillation amplitude, duration and intensity.  相似文献   

10.
The use of probe vehicles to provide estimates of link travel times has been suggested as a means of obtaining travel times within signalized networks for use in advanced traveler information systems. Previous research has shown that bias in arrival time distributions of probe vehicles will lead to a systematic bias in the sample estimate of the mean. This paper proposes a methodology for reducing the effect of this bias. The method, based on stratified sampling techniques, requires that vehicle count data be obtained from an in-road loop detector or other traffic surveillance method. The effectiveness of the methodology is illustrated using simulation results for a single intersection approach and for an arterial corridor. The results for the single intersection approach indicate a correlation (R2) between the biased estimate and the population mean of 0.61, and an improved correlation between the proposed estimation method and the population mean of 0.81. Application of the proposed method to the arterial corridor resulted in a reduction in the mean travel time error of approximately 50%, further indicating that the proposed estimation method provides improved accuracy over the typical method of computing the arithmetic mean of the probe reports.  相似文献   

11.
This paper extends the continuum signalized intersection model exhaustively studied in Han et al. (2014) to more accurately account for three realistic complications: signal offsets, queue spillbacks, and complex signal phasing schemes. The model extensions are derived theoretically based on signal cycle, green split, and offset, and are shown to approximate well traffic operations at signalized intersections treated using the traditional (and more realistic) on-and-off model. We propose a generalized continuum signal model, which explicitly handles complex vehicle spillback patterns on signalized networks with provable error estimates. Under mild conditions, the errors are small and bounded by fixed values that do not grow with time. Overall, this represents a significant improvement over the original continuum model, which had errors that grew quickly with time in the presence of any queue spillbacks and for which errors were not explicitly derived for different offset cases. Thus, the new model is able to more accurately approximate traffic dynamics in large networks with multiple signals under more realistic conditions. We also qualitatively describe how this new model can be applied to several realistic intersection configurations that might be encountered in typical urban networks. These include intersections with multiple entry and exit links, complex signal phasing, all-red times, and the presence of dedicated turning lanes. Numerical tests of the models show remarkable consistency with the on-and-off model, as expected from the theory, with the added benefit of significant computational savings and higher signal control resolution when using the continuum model.  相似文献   

12.
Recently connected vehicle (CV) technology has received significant attention thanks to active pilot deployments supported by the US Department of Transportation (USDOT). At signalized intersections, CVs may serve as mobile sensors, providing opportunities of reducing dependencies on conventional vehicle detectors for signal operation. However, most of the existing studies mainly focus on scenarios that penetration rates of CVs reach certain level, e.g., 25%, which may not be feasible in the near future. How to utilize data from a small number of CVs to improve traffic signal operation remains an open question. In this work, we develop an approach to estimate traffic volume, a key input to many signal optimization algorithms, using GPS trajectory data from CV or navigation devices under low market penetration rates. To estimate traffic volumes, we model vehicle arrivals at signalized intersections as a time-dependent Poisson process, which can account for signal coordination. The estimation problem is formulated as a maximum likelihood problem given multiple observed trajectories from CVs approaching to the intersection. An expectation maximization (EM) procedure is derived to solve the estimation problem. Two case studies were conducted to validate our estimation algorithm. One uses the CV data from the Safety Pilot Model Deployment (SPMD) project, in which around 2800 CVs were deployed in the City of Ann Arbor, MI. The other uses vehicle trajectory data from users of a commercial navigation service in China. Mean absolute percentage error (MAPE) of the estimation is found to be 9–12%, based on benchmark data manually collected and data from loop detectors. Considering the existing scale of CV deployments, the proposed approach could be of significant help to traffic management agencies for evaluating and operating traffic signals, paving the way of using CVs for detector-free signal operation in the future.  相似文献   

13.
A novel approach is presented in which signalized intersections are treated as normal highway bottlenecks for improved computational efficiency. It is unique in two ways. First, it treats the signalized intersections as common freeway bottlenecks by a reversed cause and effect modeling approach. Both traffic arrivals and departures are modeled by smooth continuous functions of time as if there were no interruptions to traffic flows from signals. The use of smooth continuous functions for departure curves instead of commonly used step functions makes it easy to apply differential calculus in optimization and future extension to a system of intersections. Second, a dynamic linear programming (LP) model is then developed to maximize the total vehicular output from the intersection during the entire period of congestion subject to prevailing capacity and other operational constraints. The continuous optimal departure flow rate (the effect) is then converted to signal timing parameters (the cause) that can be readily implemented. Two numerical examples are presented to demonstrate the properties of the proposed algorithm and examine its performance.  相似文献   

14.
In this paper, we present a Smart In-Vehicle Decision Support System (SIV-DSS) to help making better stop/go decisions in the indecision zone as a vehicle is approaching a signalized intersection. Supported by the Vehicle-to-Infrastructure (V2I) communications, the system integrates and utilizes the information from both vehicle and intersection. The effective decision support models of SIV-DSS are realized with the probabilistic sequential decision making process with the capability of combining a variety of advantages gained from a set of decision rules, where each decision rule is responsible to specific situations for making right decisions even without complete information. The decision rules are either extracted from the existing parametric models of the indecision zone problem, or designed as novel ones based on physical models utilizing the integrated information containing the key inputs from vehicle motion, vehicle-driver characteristics, intersection geometry and topology, signal phase and timings, and the definitions of red-light running (RLR). In SIV-DSS, the generality is reached through physical models utilizing a large number of accurate physical parameters, and the heterogeneity is treated by including a few behavioral parameters in driver characteristics. The performance of SIV-DSS is evaluated with systematic simulation experiments. The results show that the system can not only ensure traffic safety by greatly reducing the RLR probability, but also improve mobility by significantly reducing unnecessary stops at the intersection. Finally, we briefly discuss some relevant aspects and implications for SIV-DSS in practical implementations.  相似文献   

15.
Three families of road noise prediction models can be distinguished. Static noise models only consider free-flow constant-speed traffic with uniformly distributed vehicles. Analytic noise models assume that all vehicles are isolated from one another but account for their mean kinematic profile over the network. Micro-simulation noise models relax the hypothesis of no interaction between vehicles and fully capture traffic flow dynamic effects such as queue evolution. This study compares the noise levels obtained by these three methodologies at signalized intersections and roundabouts. It reveals that micro-simulation noise models outperform the other approaches. Particularly, they are able to capture the effects of stochastic transient queues in under-saturated conditions as well as stop-and-go behaviors in oversaturated regime. Accounting for traffic dynamics is also shown to improve predictions of noise variations due to different junction layouts. In this paper, a roundabout is found to induce a 2.5 dB(A) noise reduction compared to a signalized intersection in under-saturated conditions while the acoustic contributions of both kinds of junctions balance in oversaturated regime.  相似文献   

16.
Loop detectors are devices that are most commonly used for obtaining data at intersections. Multiple detectors are usually required to monitor a location, and this reduces the accuracy of detectors for collecting traffic volumes. The purpose of this paper is to increase the accuracy of loop detector counts using Adaptive Neural Fuzzy Inference System (ANFIS) and Genetic Programming (GP) based on detector volume and occupancy. These methods do not need microscopic analysis and are easy to employ. Four approaches for one intersection are used in a case study. Results show that the models can improve intersection detector counts significantly. Results also show that ANFIS produces more accurate counts compared to regression and GP.  相似文献   

17.
Establishment of effective cooperation between vehicles and transportation infrastructure improves travel reliability in urban transportation networks. Lack of collaboration, however, exacerbates congestion due mainly to frequent stops at signalized intersections. It is beneficial to develop a control logic that collects basic safety message from approaching connected and autonomous vehicles and guarantees efficient intersection operations with safe and incident free vehicle maneuvers. In this paper, a signal-head-free intersection control logic is formulated into a dynamic programming model that aims to maximize the intersection throughput. A stochastic look-ahead technique is proposed based on Monte Carlo tree search algorithm to determine the near-optimal actions (i.e., acceleration rates) over time to prevent movement conflicts. Our numerical results confirm that the proposed technique can solve the problem efficiently and addresses the consequences of existing traffic signals. The proposed approach, while completely avoids incidents at intersections, significantly reduces travel time (ranging between 59.4% and 83.7% when compared to fixed-time and fully-actuated control strategies) at intersections under various demand patterns.  相似文献   

18.
Two apparent features that prevail at signalized intersections in China are green signal countdown device and long cycle lengths. The objective of this study is to investigate the impacts of green signal countdown device and long cycle length on queue discharge patterns and to discuss its implications on capacity estimation in the context of China's traffic. At five typical large intersections in Shanghai and Tianjin, 11 through lanes were observed, and 9251 saturation headways were obtained as valid samples. Statistical analyses indicate that the discharge process of queuing vehicles can be divided into three distinct stages according to the discharge flow rate: a start‐up stage, a steady stage, and a rush stage. The average time for queuing vehicles to reach a stationary saturation flow rate, that is, the start‐up stage, was found to be approximately 20–30 seconds; the rush stage usually occurs during the phase transition period. The finding is contrary to the conventional assumption that the discharge rate reaches a maximum value after the fourth vehicle is discharged and then remains constant during the green time until the queue is completely dissolved. The capacity estimation errors that might arise from the conventional methods are discussed through a comparative study and a sensitivity analysis that are based on the identified queue discharge patterns. In addition, a piecewise linear regression method was proposed in order to reduce such errors. The proposed method can be used for capacity estimation at signalized intersections with the identified queue discharge patterns. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper a new traffic flow model for congested arterial networks, named shockwave profile model (SPM), is presented. Taking advantage of the fact that traffic states within a congested link can be simplified as free-flow, saturated, and jammed conditions, SPM simulates traffic dynamics by analytically deriving the trajectories of four major shockwaves: queuing, discharge, departure, and compression waves. Unlike conventional macroscopic models, in which space is often discretized into small cells for numerical solutions, SPM treats each homogeneous road segment with constant capacity as a section; and the queuing dynamics within each section are described by tracing the shockwave fronts. SPM is particularly suitable for simulating traffic flow on congested signalized arterials especially with queue spillover problems, where the steady-state periodic pattern of queue build-up and dissipation process may break down. Depending on when and where spillover occurs along a signalized arterial, a large number of queuing patterns may be possible. Therefore it becomes difficult to apply the conventional approach directly to track shockwave fronts. To overcome this difficulty, a novel approach is proposed as part of the SPM, in which queue spillover is treated as either extending a red phase or creating new smaller cycles, so that the analytical solutions for tracing the shockwave fronts can be easily applied. Since only the essential features of arterial traffic flow, i.e., queue build-up and dissipation, are considered, SPM significantly reduces the computational load and improves the numerical efficiency. We further validated SPM using real-world traffic signal data collected from a major arterial in the Twin Cities. The results clearly demonstrate the effectiveness and accuracy of the model. We expect that in the future this model can be applied in a number of real-time applications such as arterial performance prediction and signal optimization.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号