首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为方便液罐半挂汽车列车(Tractor Semi-trailer Tank Vehicle,TSTTV)罐-车整体的优化设计匹配,综合提高整车的侧倾稳定性、侧向动力学稳定性及操纵特性,基于Lagrange方法和椭圆规摆等效机械液体晃动模型建立TSTTV的整车侧向耦合动力学模型,其典型特征是实现罐内液体侧向晃动与车辆横摆运动、侧向运动、悬挂质量的侧倾运动及非线性侧向轮胎力的集成一体化建模,贯通液体晃动动力学与车辆侧向动力学稳定性之间的联系。通过开环正弦停滞转向输入操作响应对所建立的模型进行分析评价,考察车辆横摆角速度、质心侧偏角、侧倾角、侧向载荷转移率及液体晃动角等状态量在2种充液比(FL=40%,80%)及2种罐体椭圆率(Δ=1.0,1.3)下的响应。研究结果表明:所建立的TSTTV模型可以实现液体侧向晃动作用下的车辆侧向耦合动力学仿真分析,能够反映充液比、罐体截面椭圆率等运输条件和罐体几何参数对整车侧倾稳定性、侧向动力学稳定性及操纵特性的影响;基于该模型可以针对液体介质、充液比及道路环境等运输条件因素的影响,研究以提高整车侧向动力学稳定性为目标的TSTTV灌-车整体的优化设计匹配问题,这对提升液罐车的设计性能、提高行驶的安全性和运输效率具有重要意义。  相似文献   

2.
Most of the controllers introduced for four-wheel-steer (4WS) vehicles are derived with the assumption that the longitudinal speed of the vehicle is constant. However, in real applications, the longitudinal speed varies, and the longitudinal, lateral, and yaw dynamics are coupled. In this paper, the longitudinal dynamics of the vehicle as well as its lateral and yaw motions are controlled simultaneously. This way, the effect of driving/braking forces of the tires on the lateral and yaw motions of the vehicle are automatically included in the control laws. To address the dynamic parameter uncertainty of the vehicle, a chatter-free variable structure controller is introduced. Elimination of chatter is achieved by introducing a dynamically adaptive boundary layer thickness. It is shown via simulations that the proposed control approach performs more robustly than the controllers developed based on dynamic models, in which longitudinal speed is assumed to be constant, and only lateral speed and yaw rate are used as system states. Furthermore, this approach supports all-wheel-drive vehicles. Front-wheel-drive or rear-wheel-drive vehicles are also supported as special cases of an all-wheel-drive vehicle.  相似文献   

3.
The vehicle stability involves many aspects, such as the anti-rollover stability in extreme steering operations and the vehicle lateral stability in normal steering operations. The relationships between vehicle stabilities in extreme and normal circumstances obtain less attention according to the present research works. In this paper, the coupling interactions between vehicle anti-rollover and lateral stability, as well as the effect of road excitation, are taken into account on the vehicle rollover analysis. The results in this paper indicate that some parameters influence the different vehicle stabilities diversely or even contradictorily. And it has been found that there are contradictions between the vehicle rollover mitigation performance and the lateral stability. The direct cause for the contradiction is the lateral coupling between tyres and road. Tyres with high adhesion capacity imply that the vehicle possesses a high performance ability to keep driving direction, whereas the rollover risk of this vehicle increases due to the greater lateral force that tyres can provide. Furthermore, these contradictions are intensified indirectly by the vertical coupling between tyres and road. The excitation from road not only deteriorates the tyres’ adhesive condition, but also has a considerable effect on the rollover in some cases.  相似文献   

4.
The stability driving characteristic and the tire wear of 8-axle vehicle with 16-independent driving wheels are discussed in this paper. The lateral stability of 8-axle vehicle can be improved by the direct yaw moment which is generated by the 16 independent driving wheels. The hierarchical controller is designed to determine the required yaw torque and driving force of each wheel. The upper level controller uses feed-forward and feed-backward control theory to obtain the required yaw torque. The fuzzification weight ratio of two control objective is built in the upper level controller to regulate the vehicle yaw and lateral motions. The rule-based yaw moment distribution strategy and the driving force adjustment based on the safety of vehicle are proposed in the lower level controller. The influence of rear steering angle is considered in the distribution of driving force of the wheel. Simulation results of a vehicle double lane change show the stability of 8-axle vehicle under the proposed control algorithm. The wear rate of tire is calculated by the interaction force between the tire and ground. The wear of tire is different from each other for the vehicle with the stability controller or not.  相似文献   

5.
An integrated vehicle dynamics control (IVDC) algorithm, developed for improving vehicle handling and stability under critical lateral motions, is discussed in this paper. The IVDC system utilises integral and nonsingular fast terminal sliding mode (NFTSM) control strategies and coordinates active front steering (AFS) and direct yaw moment control (DYC) systems. When the vehicle is in the normal driving situation, the AFS system provides handling enhancement. If the vehicle reaches its handling limit, both AFS and DYC are then integrated to ensure the vehicle stability. The major contribution of this paper is in improving the transient response of the vehicle yaw rate and sideslip angle tracking controllers by implementing advanced types of sliding mode strategies, namely integral terminal sliding mode and NFTSM, in the IVDC system. Simulation results demonstrate that the developed control algorithm for the IVDC system not only has strong robustness against uncertainties but also improves the transient response of the control system.  相似文献   

6.
In this study, cooperative regenerative braking control of front-wheel-drive hybrid electric vehicle is proposed to recover optimal braking energy while guaranteeing the vehicle lateral stability. In front-wheel-drive hybrid electric vehicle, excessive regenerative braking for recuperation of the maximum braking energy can cause under-steer problem. This is due to the fact that the resultant lateral force on front tire saturates and starts to decrease. Therefore, cost function with constraints is newly defined to determine optimum distribution of brake torques including the regenerative brake torque for improving the braking energy recovery as well as the vehicle lateral stability. This cost function includes trade-off relation of two objectives. The physical meaning of first objective of cost function is to maximize the regenerative brake torque for improving the fuel economy and that of second objective is to increase the mechanical-friction brake torques at rear wheels rather than regenerative brake torque at front wheels for preventing front tire saturation. And weighting factor in cost function is also proposed as a function of under-steer index representing current state of the vehicle lateral motion in order to generalize the constrained optimization problem including both normal and severe cornering situation. For example, as the vehicle approaches its handling limits, adaptation of weighting factor is possible to prioritize front tire saturation over increasing the recuperation of braking energy for driver safety and vehicle lateral stability. Finally, computer simulation of closed loop driver-vehicle system based on Carsim? performed to verify the effectiveness of adaptation method in proposed controller and the vehicle performance of the proposed controller in comparison with the conventional controller for only considering the vehicle lateral stability. Simulation results indicate that the proposed controller improved the performance of braking energy recovery as well as guaranteed the vehicle lateral stability similar to the conventional controller.  相似文献   

7.
The present paper describes the study of the stability in the straight running of a three-wheeled tilting vehicle for urban and sub-urban mobility. The analysis was carried out by developing a multibody model in the Matlab/SimulinkSimMechanics environment. An Adams-Motorcycle model and an equivalent analytical model were developed for the cross-validation and for highlighting the similarities with the lateral dynamics of motorcycles. Field tests were carried out to validate the model and identify some critical parameters, such as the damping on the steering system. The stability analysis demonstrates that the lateral dynamic motions are characterised by vibration modes that are similar to that of a motorcycle. Additionally, it shows that the wobble mode is significantly affected by the castor trail, whereas it is only slightly affected by the dynamics of the front suspension. For the present case study, the frame compliance also has no influence on the weave and wobble.  相似文献   

8.
The highway transport of mobile homes is a matter of concern for the increasingly safety-minded driving public. The low speeds of towed vehicles necessary to maintain stability, together with the requirements for excessive lane widths due to clearance for the lateral motion, result in increased likelihood of traffic accidents, impeded traffic flow, and reduced highway capacity. A safe increase in the stable cruising speed, coupled with a decreased amplitude in the pendular motion helps alleviate all three of the aforementioned problems. Energy input at hitch point and lateral forces between the road and tires permit lateral vehicular motions, which occur above a critical speed, to increase in amplitude until possibly a limit cycle or instability is reached. One would expect that structural dynamics could have a pronounced influence on the lateral response of towed vehicles with large and relatively flexible chassis, such as mobile homes. The objective of this research is to determine the influence of chassis structural parameters on the lateral stability of towed flexible bodies during transport. The mass of the towing vehicle is assumed infinitely large, thus eliminating any dynamic interconnection between the towing and towed vehicles. The assumed modes method is used to describe the lateral deflection of the flexible towed vehicle. Results of the study of this model indicate that increase in structural rigidity of towed vehicle increases the critical towing speed whereas increase in the tire cornering coefficient reduces the safe towing speed, which is true only for this simplified model where the dynamic interaction with the towing vehicle is not included.  相似文献   

9.
Modern software tools have enhanced modelling, analysis and simulation capabilities pertaining to control of dynamic systems. In this regard, in this paper a full vehicle model with flexible body is exposed by using MSC. ADAMS and MSC. NASTRAN. Indeed, one of the most significant vehicle dynamic controls is directional stability control. In this case, the vehicle dynamic control system (VDC) is used to improving the vehicle lateral and yaw motions in critical manoeuvres. In this paper, for design the VDC system, an optimal control strategy has been used for tracking the intended path with optimal energy. For better performance of VDC system, an anti-lock brake system (ABS) is designed as a lower layer of the control system for maintaining the tyre longitudinal slip in proper value. The performances of the controller on rigid and flexible models are illustrated, and the results show the differences between the control efforts for these models, which are related to the differences of dynamic behaviours of rigid and flexible vehicle dynamic models.  相似文献   

10.
For the first time, this paper investigates the application of the concept of Lyapunov exponents to the stability analysis of the nonlinear vehicle model in plane motion with two degrees of freedom. The nonlinearity of the model comes from the third-order polynomial expression between the lateral forces on the tyres and the tyre slip angles. Comprehensive studies on both system and structural stability analyses of the vehicle model are presented. The system stability analysis includes the stability, lateral stability region, and effects of driving conditions on the lateral stability region of the vehicle model in the state space. In the structural stability analysis, the ranges of driving conditions in which the stability of the vehicle model is guaranteed are given. Moreover, through examples, the largest Lyapunov exponent is suggested as an indicator of the convergence rate in which the disturbed vehicle model returns to its stable fixed point.  相似文献   

11.
This paper presents the development of a modal control strategy for the active steering of solid axle railway vehicles and reveals benefits of actively stabilising the wheelsets of a railway vehicle. A modal decomposition is applied to a 2-axle railway vehicle to de-couple its body lateral and yaw motions and hence to allow more detailed analysis of the vehicle behaviour and more robust design of active controllers. Independent controllers for the two motions are developed based on the two de-coupled modes. Parameter variations such as creep coefficients and wheelset conicity are taken into account in the design process to guarantee a robust design. The study shows that, compared to a passive vehicle, the vehicles with actively steered wheelsets not only perform much better on a curved track, but also improve the ride quality on straight track. Computer simulations are used in the study to verify the development of the controllers and assess the system performance with the control scheme proposed.  相似文献   

12.
This paper presents the development of a modal control strategy for the active steering of solid axle railway vehicles and reveals benefits of actively stabilising the wheelsets of a railway vehicle. A modal decomposition is applied to a 2-axle railway vehicle to de-couple its body lateral and yaw motions and hence to allow more detailed analysis of the vehicle behaviour and more robust design of active controllers. Independent controllers for the two motions are developed based on the two de-coupled modes. Parameter variations such as creep coefficients and wheelset conicity are taken into account in the design process to guarantee a robust design. The study shows that, compared to a passive vehicle, the vehicles with actively steered wheelsets not only perform much better on a curved track, but also improve the ride quality on straight track. Computer simulations are used in the study to verify the development of the controllers and assess the system performance with the control scheme proposed.  相似文献   

13.
针对车辆在纵向运动和横摆运动时的强耦合关系给车辆动力学控制带来的困难,以四轮独立电驱动车辆作为研究对象,基于微分几何理论设计了车辆系统运动解耦控制方法,将非线性强耦合的四轮驱动车辆动力学系统解耦为纵向和横向两个相对独立运动控制子系统,并设计了鲁棒控制器,以提高抵抗车辆行驶时不确定外力如侧风的干扰能力。基于 Trucksim 软件建立四轮驱动车辆模型,并针对车辆解耦控制策略和抗干扰策略进行了仿真测试。结果表明,相比于无解耦控制的车辆,采用微分几何解耦控制的四轮独立驱动车辆纵向速度偏差降低了 82.1%,横摆角速度偏差降低了80.7%,且微风干扰下的抗干扰能力明显改善,车辆稳定性显著提升。为验证该运动解耦控制策略在实时系统中的控制效果,还进行了硬件在环试验,结果表明,硬件在环试验的结果与仿真结果一致。  相似文献   

14.
The driver of a vehicle has a significant influence on handling and stability of the vehicle. Due to the complex behavior of a human pilot, a driver model is usually neglected when dealing with the problem of vehicle stability. This work focuses on the interaction between the vehicle and the human pilot. A model characterizing human operator behavior in a regulation task is employed to study directional stability. Linear stability is analyzed by the application of the Routh-Hurwitz criterion and stability boundaries separating the stable domain of operation of the driver from the unstable one are constructed.

The linear analysis predicts that the only possible instability in a driver/vehicle system is an oscillatory instability with increasing amplitude. It is shown that the addition of kinematic as well as slip angle nonlinearities in the vehicle model can have a stabilizing effect on these oscillations of the combined driver/vehicle system. They may also be responsible for the opposite, namely a linearly stable motion may become unstable to finite size disturbances. These nonlinear motions are predicted by a bifurcation analysis and are verified by direct numerical simulation.  相似文献   

15.
This paper presents a stability analysis of a vehicle flexible in the plane of yawing and being controlled by a human pilot. The vehicle is represented by a two degrees-of-freedom model and the pilot is assumed to respond to the lateral displacement and to the lateral velocity with a time delay. It is shown that in order for the pilot model to exhibit a realistic human operator behavior, driver's gain must be linearly proportional to vehicle velocity and also inversely related to frontal visibility. Moreover, application of the Hurwitz criterion indicated that flexibility of the vehicle frame has a destabilising effect on the lateral stability and reduces the stable domain of operation.  相似文献   

16.
In this paper, a vehicle's lateral dynamic model is developed based on the pure and the combined-slip LuGre tyre models. Conventional vehicle's lateral dynamic methods derive handling models utilising linear tyres and pure-slip assumptions. The current article proposes a general lateral dynamic model, which takes the linear and nonlinear behaviours of the tyre into account using the pure and combined-slip assumptions separately. The developed methodology also incorporates various normal loads at each corner and provides a proper tyre–vehicle platform for control and estimation applications. Steady-state and transient LuGre models are also used in the model development and their responses are compared in different driving scenarios. Considering the fact that the vehicle dynamics is time-varying, the stability of the suggested time-varying model is investigated using an affine quadratic stability approach, and a novel approach to define the critical longitudinal speed is suggested and compared with that of conventional lateral stability methods. Simulations have been conducted and the results are used to validate the proposed method.  相似文献   

17.
SUMMARY

This paper presents a stability analysis of a vehicle flexible in the plane of yawing and being controlled by a human pilot. The vehicle is represented by a two degrees-of-freedom model and the pilot is assumed to respond to the lateral displacement and to the lateral velocity with a time delay. It is shown that in order for the pilot model to exhibit a realistic human operator behavior, driver's gain must be linearly proportional to vehicle velocity and also inversely related to frontal visibility. Moreover, application of the Hurwitz criterion indicated that flexibility of the vehicle frame has a destabilising effect on the lateral stability and reduces the stable domain of operation.  相似文献   

18.
针对改扩建高速公路单侧加宽方案老路利用时可能存在的行车稳定性问题,应用基于车辆动力学的建模仿真方法,采用联合仿真技术,在Carsim/Trucksim仿真软件中得到车辆在横坡组合路段行驶过程中车轮的垂直载荷与车辆侧向加速度;在Simulink中计算车辆的横向载荷转移率和侧向加速度;通过上述指标分析车辆横向侧翻和侧滑稳定性,判断车辆在改扩建公路横坡组合路段上的行驶稳定性;联合仿真结果表明,车辆在横向坡度为2%和1.5%、换道路长为120 m和80 m的横坡组合路段上行驶均具有良好的横向稳定性;该方法可用于其他道路和驾驶行为的车辆稳定性分析.   相似文献   

19.
As for the tire analysis, lateral tire force is a fundamental factor that describes the stability of vehicle handling. Attempts to analyze the vehicle stability have been made based on various objective test methods and some specific factors such as yaw, lateral acceleration and roll angle. However, the problem to identify which axle is lack of the tire grip at a certain situation still remains. Since indoor tire force measurement system cannot represent a real road and vehicle conditions, tire force measurement through a real vehicle test is inevitable. Due to the high price of the tire force measurement device, tire force estimator can be an alternative toward cost reduction and device failure. In this paper, nonlinear planar full car model combined with tire model is proposed. Then, using discrete-time extended Kalman-Bucy filter (EKBF), individual tire lateral force are estimated with modified relaxation length model.  相似文献   

20.
Vehicle stability and active safety control depend heavily on tyre forces available on each wheel of a vehicle. Since tyre forces are strongly affected by the tyre–road friction coefficient, it is crucial to optimise the use of the adhesion limits of the tyres. This study presents a hybrid method to identify the road friction limitation; it contributes significantly to active vehicle safety. A hybrid estimator is developed based on the three degrees-of-freedom vehicle model, which considers longitudinal, lateral and yaw motions. The proposed hybrid estimator includes two sub-estimators: one is the vehicle state information estimator using the unscented Kalman filter and another is the integrated road friction estimator. By connecting two sub-estimators simultaneously, the proposed algorithm can effectively estimate the road friction coefficient. The performance of the proposed estimation algorithm is validated in CarSim/Matlab co-simulation environment under three different road conditions (high-μ, low-μ and mixed-μ). Simulation results show that the proposed estimator can assess vehicle states and road friction coefficient with good accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号