首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
将高速铁路车站引入城市地下,必然面临车站内的空气动力学问题。探讨了隧道长度对车站内瞬变压力等气动效应的影响规律,在分析了站内压力不利叠加时机的基础上,推导了与隧道长度有关的地下车站内瞬变压力不利叠加的判别式,并对不同隧道长度下列车通过地下车站进行了数值模拟,验证了理论分析结果,探讨了影响站内气动环境的不利隧道长度。  相似文献   

2.
高速铁路隧道压力波数值分析   总被引:18,自引:3,他引:18  
本文根据一维、可压缩、不等熵非定常流体流动理论并利用特征线法发展了高速列车驶人隧道引起隧道内空气压力瞬变的数值模拟方法,并根据该方法初步探讨了喇叭口型隧道减缓压力波的效果。计算结果表明,该方法可作为我国高速铁路隧道设计参数选择的研究工具。隧道设置喇叭状洞口作为减缓压力波的措施是可行的。  相似文献   

3.
小净距公路隧道施工力学效应研究   总被引:3,自引:1,他引:2  
通过有限元数值模拟,分析了小净距公路隧道中夹岩柱的受力特性、围岩屈服接近度、锚杆轴力、二次衬砌混凝土内力特征等。研究结果表明:净距较小为B/3时,研究区中夹岩柱围岩会受到左右双洞开挖应力场重叠作用的严重影响,受力状态十分不利,屈服区也贯通中夹岩柱,中夹岩柱两侧的隧道支护衬砌结构都应有所加强;当净距为(0.85~1.5)B时,中夹岩柱受力状态受净距的影响已很小。  相似文献   

4.
从轻骨料混凝土的细观结构出发,将轻骨料混凝土看作是由砂浆基质、轻骨料以及它们之间的界面层组成的三相复合材料.用有限元方法研究其界面层对于宏观试样断裂特征及其强度影响,并模拟了轻骨料混凝土在单轴拉伸载荷作用下的破坏形式,验证了轻骨料的力学性能对于轻骨料混凝土的断裂所起的重要作用.  相似文献   

5.
黄土地区滑坡灾害频发,滑坡尤其是超深层滑坡对既有隧道结构受力变形有重要影响,隧道滑坡体系变形特性、力学响应一直是学术界和工程界关注的焦点.?以某超深层滑坡地质灾害中的铁路隧道工程为依托,建立了"超深层黄土边坡-滑带-隧道"FLAC3D三维数值模型;利用基于位移突变的局部强度折减法模拟坡体失稳临界状态;针对不同滑带隧道相...  相似文献   

6.
以严寒区高速铁路沿线上的高台隧道为工程背景,根据缺陷检测结果,提出严寒地区高速铁路隧道工程衬砌“多道防护,综合治理”原则。同时探讨了衬砌一般病害、结构补强、渗漏水等整治措施及其相关施工方案。基于大气降水渗入量法计算得到高台隧道正常涌水量接近600 m3/d,最大涌水量接近1 200 m3/d。按照提出的整治措施进行处理后,隧道不再出现流水和喷水病害,渗水病害范围减少52%,隧道缺陷问题得到显著改善,后期服役性能良好。  相似文献   

7.
中国高速铁路隧道气动效应研究进展   总被引:1,自引:1,他引:0  
论述了现场实车试验、数值仿真计算和室内模型试验等高速铁路隧道气动效应的研究方法, 分析了隧道气动效应的影响因素, 系统研究了动车组通过隧道及交会条件下车体内和隧道内瞬变压力与洞口微气压波随速度的变化规律、缓冲结构的设置条件、隧道附加阻力的计算方法、隧道内辅助设施所承受的气动荷载要求以及长大隧道远程测试控制技术和隧道内精确交会控制方法。研究结果表明: 高速列车通过隧道引起的气动效应直接影响到列车运行的安全性、乘员舒适性以及隧道周边的环境, 是高速铁路隧道设计中必须解决的关键技术问题; 建议提出适合中国国情的隧道内复合型舒适度、微气压波标准, 开展多孔吸能材料、洞口缓冲结构、减压竖井、横通道设计等减缓措施研究。  相似文献   

8.
采用离散元方法构建了沥青混合料马歇尔数字试件,模拟了间接拉伸试验,研究了粘结强度比、颗粒摩擦因数和加载速率对微裂缝扩展过程的影响,分析了试件内部颗粒的细观响应。模拟结果表明:粘结强度比越大,沥青的粘结特性越明显,使得微裂缝的类型由法向渐变为切向,当粘结强度比由0.500增大到4.000时,接触力减小了78.05%,位移...  相似文献   

9.
高速铁路隧道缓冲结构的气动作用分析   总被引:1,自引:0,他引:1  
为了减轻高速列车进出隧道时引起的洞口压力波效应,常在隧道入口加建缓冲结构.采用计算流体力学数值分析的方法,仿真计算了高速铁路隧道入口缓冲结构参数对列车以350 km/h进入隧道时的气动作用,分析了过渡段长度、缓冲段长度、缓冲结构开孔率、缓冲结构入口形式对隧道口内气体压力的影响和缓冲结构对隧道内会车压力波的影响.计算结果表明:过渡段长度和缓冲结构入口形式对隧道内气动影响很小,其他参数一定时缓冲段长度存在一最优值;缓冲结构上开孔有助于减小气体压力升高率,缓冲结构的存在有助于降低隧道内会车压力波峰值.  相似文献   

10.
为了获得高海拔地区隧道空气动力学效应随海拔高度的变化规律,针对我国中西部及西南部艰险困难山区高海拔低温的气候特点,给出了高速列车进入隧道时产生压缩波的三维可压缩、粘性、非定常流场数值模拟方法,对高速列车进入低气压隧道时产生的气动效应进行研究.研究结果表明:隧道所处海拔高度的变化对隧道内压缩波及隧道出口微气压波的影响较大,随着海拔的升高,大气压的降低会导致隧道内压缩波及隧道出口微气压波的最大值及最小值呈线性降低,降低幅度分别为70%和71%,而大气压的变化对测点压力波形无影响;随着温度的降低,隧道内的压缩波及隧道出口微气压波的最大值及最小值均降低,降低幅度分别为34%和36%,基本呈线性效应;海拔高度的变化对隧道内及隧道外气动效应的影响比温度的大.针对我国高海拔地区的气候特点,根据旅客的舒适度准侧,提出了CRH380B型高寒列车在列车速度为350 km/h、气压为75.99 kPa及气体温度为250 K时的隧道净空断面积约为96 m2,可为下一步高海拔低温条件下高速铁路隧道净空断面积的设计提供参考.   相似文献   

11.
建立了高速列车组包括头车、中间车、尾车及外部空间在内的气动噪声计算物理模型,从声学理论出发,结合列车实际运行的边界条件,运用以稳态结果作为初始值进行瞬态计算,预测了高速列车气动噪声,并对采用直接瞬态法计算气动噪声的可行性进行了分析计算.研究结果表明气动噪声分布于很宽的频带内,无明显的主频,属于宽频噪声.在低频中气动噪声...  相似文献   

12.
横风工况下高速动车组空调表面气动性能数值分析   总被引:1,自引:1,他引:0  
通过采用不可压缩粘性流体的N-S方程和k-ε双方程湍流模型,建立了高速动车组模型,对其在不同横风工况下运行的外流场进行了空气动力学仿真.分析动车组空调表面的压力分布规律,结果表明:列车空调机组所受阻力值由头车至尾车逐渐减小,横风等级增加,阻力值变化不大;空调机组进出口表面负压值及冷凝器进出口压差随横风等级的增加而增大,...  相似文献   

13.
通过采用不可压缩粘性流体的N-S方程和k-ε双方程湍流模型,建立了高速动车组模型,对其在不同横风工况下运行的外流场进行了空气动力学仿真.分析动车组空调表面的压力分布规律,结果表明:列车空调机组所受阻力值由头车至尾车逐渐减小,横风等级增加,阻力值变化不大;空调机组进出口表面负压值及冷凝器进出口压差随横风等级的增加而增大,4、8、12级横风时,空调进出口表面负压总值较无横风时分别提高约30%、174%、561%;随横风等级增加,头车空调所受横向力并无显著变化,而中,尾车空调所受横向力急剧增加,且方向与头车所受横向力相反.4、8、12级横风时,三车空调及导流罩所受横向力总值分别为78、532、2 499 N.  相似文献   

14.
以无锡地铁某盾构隧道区间穿越既有铁路隧道为工程实例,基于Ansys数值软件建立3维力学模型,从盾构隧道施工过程中的盾构推力、注浆压力、施工工况、相邻隧道间距4个方面对盾构隧道施工引起的既有铁路隧道的结构变形和受力规律进行了数值模拟,并分析了既有隧道变形的机理和影响因素。  相似文献   

15.
为获得高速列车通过隧道时空气阻力变化规律,指导高速铁路纵断和列车头部的优化设计,采用三维粘性、不等熵、可压缩、非定常流的Navier-Stokes方程,用有限体积法进行区域离散,对高速列车通过隧道时的空气阻力进行了三维数值模拟.对计算结果中的空气阻力曲线进行了分析,将其中的空气阻力波动情况与列车的运行情况相结合,对此过程进行了详细的描述和解释.介绍了考虑隧道中列车空气阻力时高速铁路线路纵断面设计中最大坡度的折减方法.  相似文献   

16.
为了研究高速列车的头形对列车整车的气动性能有着重要的影响,对一节半车编组列车分别进行了空气动力学仿真分析和风洞试验.采用有限体积法对列车头部周围流场进行区域离散,进行气动性能仿真分析,得到高速列车头车的气动特性参数.在满足几何相似的基础上,对一节半编组的列车模型进行风洞试验,获取头部的气动参数,并从模拟仿真分析结果与风洞试验结果对比分析中验证,两种方法能够相互补充,相互印证,为高速列车头形的研究总结出有效的研究途径.  相似文献   

17.
高速列车头部气动性能的模拟计算与试验   总被引:1,自引:0,他引:1  
为了研究高速列车的头形对列车整车的气动性能有着重要的影响,对一节半车编组列车分别进行了空气动力学仿真分析和风洞试验.采用有限体积法对列车头部周围流场进行区域离散,进行气动性能仿真分析,得到高速列车头车的气动特性参数.在满足几何相似的基础上,对一节半编组的列车模型进行风洞试验,获取头部的气动参数,并从模拟仿真分析结果与风洞试验结果对比分析中验证,两种方法能够相互补充,相互印证,为高速列车头形的研究总结出有效的研究途径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号