首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文中介绍了一种基于嵌入式平台的轮胎垂直载荷数据采集与信号处理系统设计方案。在轮胎内部嵌装了MEMS加速度、胎压和温度传感器,以获取轮胎径向加速度、胎压和温度等基础实时数据,并从中提取特征信息来表征轮胎垂向载荷。分别进行了室内台架试验和实车试验,对多种工况下的智能轮胎的垂向载荷测量方法和特征提取算法进行了验证。结果表明,基于智能轮胎的垂向载荷测量方法可行,精度满足工程应用要求。  相似文献   

2.
车辆结构参数和道路环境信息的实时准确获取是提高智能汽车运动控制性能的重要因素之一,而车辆质量与道路坡度信息是多种汽车控制系统的必要信息,因此质量与坡度在线估计的研究一直受到关注。针对车辆质量与道路坡度的联合估计问题,提出了一种基于交互多模型的质量与坡度融合估计方法。首先,设定了适宜进行质量精确估计的工况条件,据此提出了基于模糊规则的质量估计置信度因子计算算法,进而设计了基于置信度因子的递推最小二乘车辆质量估计算法,以实现质量的在线估计。然后,以车辆纵向动力学模型为基础,建立了运动学和动力学2种坡度估计模型,并设计了基于运动学模型的线性卡尔曼滤波坡度观测器,基于电子稳定性程序ESP的纵向加速度信息实现坡度估计,设计了基于动力学模型的无迹卡尔曼滤波坡度观测器,基于ESP和发动机管理系统EMS的力信息实现坡度估计。运动学模型未考虑车辆姿态信息,坡度估算结果与实际值有偏差;动力学模型对模型精度要求高,算法稳定性差,为充分发挥2种方法优势实现坡度的精确估计,采用交互多模型算法实现了2种坡度估计方法的加权融合。最后,对所设计的算法进行了实车试验验证。结果表明:所设计的质量与坡度估算算法具有较好的实时性和准确性,适合智能汽车运动控制的应用需求。  相似文献   

3.
车辆结构参数和道路环境信息的实时准确获取是提高智能汽车运动控制性能的重要因素之一,而车辆质量与道路坡度信息是多种汽车控制系统的必要信息,因此质量与坡度在线估计的研究一直受到关注。针对车辆质量与道路坡度的联合估计问题,提出了一种基于交互多模型的质量与坡度融合估计方法。首先,设定了适宜进行质量精确估计的工况条件,据此提出了基于模糊规则的质量估计置信度因子计算算法,进而设计了基于置信度因子的递推最小二乘车辆质量估计算法,以实现质量的在线估计。然后,以车辆纵向动力学模型为基础,建立了运动学和动力学2种坡度估计模型,并设计了基于运动学模型的线性卡尔曼滤波坡度观测器,基于电子稳定性程序ESP的纵向加速度信息实现坡度估计,设计了基于动力学模型的无迹卡尔曼滤波坡度观测器,基于ESP和发动机管理系统EMS的力信息实现坡度估计。运动学模型未考虑车辆姿态信息,坡度估算结果与实际值有偏差;动力学模型对模型精度要求高,算法稳定性差,为充分发挥2种方法优势实现坡度的精确估计,采用交互多模型算法实现了2种坡度估计方法的加权融合。最后,对所设计的算法进行了实车试验验证。结果表明:所设计的质量与坡度估算算法具有较好的实时性和准确性,适合智能汽车运动控制的应用需求。  相似文献   

4.
重型载货汽车车桥轮胎螺栓经常会发生松动断裂故障,影响行车安全。从螺栓松动机理、横向振动试验、实车路试三个方面阐述导致松动的原因,通过DOE试验设计了2因子(摩擦系数、轴向预紧力)2水平之间的交互试验,通过采用超声波螺栓轴力测试仪对实车路试前后轮胎螺栓的预紧力进行测量分析,进一步阐述了摩擦系数和轴向力对于轮胎螺栓防松性能的影响。试验结果表明随着摩擦系数、轴向预紧力的增大,螺栓横向振动试验后、实车路试后轴向力的衰减率也越小,防松性能越好;相比而言,摩擦系数的增大比轴向预紧力增大对于防松的效果更显著。  相似文献   

5.
针对四轮轮毂电机电动汽车行驶过程中的状态估计和在数据测量过程中由于偶然因素使观测序列中存在野值的问题,本文中提出了一种基于抗野值鲁棒容积卡尔曼滤波的车辆行驶状态估计算法。首先利用四轮轮毂电机电动汽车的每个车轮的电机驱动力矩容易测得的优势计算轮胎的纵向力,采用Dugoff轮胎模型计算轮胎的侧向力,建立了汽车非线性3自由度车辆模型。接着通过对简单易测低成本传感器信号的信息融合实现电动汽车在行驶过程中的纵向速度、侧向速度和质心侧偏角的准确估计。最后应用Car Sim和Matlab/Simulink联合仿真对估计算法进行验证。结果表明,基于抗野值鲁棒容积卡尔曼滤波的估计算法比扩展卡尔曼滤波估计算法更能较准确地对车辆行驶状态进行估计,且具有较好的实时性。  相似文献   

6.
张诚  罗勇  陈慧 《上海汽车》2012,(6):56-58,62
针对智能泊车系统对高精度车辆航位估计的要求,设计了基于轮速及方向盘转角信号的扩展卡尔曼滤波航位推算算法.离线仿真实验将本算法与传统航位推算算法进行了对比,结果显示本算法具有更高的精度;实车试验进一步验证了本算法的实际应用价值.  相似文献   

7.
针对智能轮胎的实时磨损监测需求,提出了一种新型轮胎磨损检测方法,使用三轴加速度传感器集成设备对轮胎进行加速度波形采集,使用凯撒最大化正态方差法对加速度波形特征进行主成分分析,基于分析结果进行波形特征值提取与筛选,并通过误差反向传播(BP)神经网络对筛选后的特征值数据进行训练,实现轮胎磨损值的实时检测。最后基于实车检测数据进行了测试与对比,结果表明该算法能在较低的算力需求下,将磨损检测的平均误差降低到0.1 mm。  相似文献   

8.
当路面附着情况和车辆行驶状态不断变化时,基于恒定侧偏刚度的模型预测控制(MPC)不能考虑轮胎非线性特性的影响,难以保证车辆轨迹跟踪的适应性。为此,提出一种考虑轮胎侧向力计算误差的自适应模型预测控制(AMPC),以提高智能汽车在不确定工况下的轨迹跟踪性能。分析了路面附着系数和垂向载荷对轮胎侧向力的影响,基于平方根容积卡尔曼滤波(SCKF)算法,设计了利用侧向加速度和横摆角速度作为测量变量的前后轮胎侧向力估计器。利用轮胎侧向力线性计算值与估计值的差值计算得到侧偏刚度修正因子,设计了前后轮胎侧偏刚度的自适应修正准则,进而提出了一种基于时变修正刚度的AMPC控制方法。基于CarSim与MATLAB/Simulink联合仿真和硬件在环测试平台,对AMPC控制的有效性和实时性进行了验证。研究结果表明:在不同的路面附着情况和车辆行驶状态下,AMPC控制都能够降低横向位置偏差和航向角偏差,有效提高车辆的轨迹跟踪精度,其控制效果明显优于基于恒定侧偏刚度的标准MPC控制。尤其在低附着工况下,标准MPC控制会因为线性轮胎力的计算误差过大而导致车辆在轨迹跟踪时严重失稳,而AMPC控制通过估计轮胎力修正侧偏刚度依然能够保证车辆稳定有效的跟踪参考轨迹。所提出的AMPC控制在保证控制精度的同时具有良好的实时性,对智能汽车控制系统的设计与优化具有重要参考价值。  相似文献   

9.
为了减少智能驾驶车辆的纵向车速控制的时滞,提高主动抗扰性,提出一种基于扰动观测的纵向车速控制算法,并进行了实车验证。模型中,采用前馈控制模块,并提前输出控制量,来提高车速跟随的响应性;以主动抗扰控制(ADRC)模块作为反馈环节,采用扩张状态观测器(ESO)在线估计内外部扰动,并在控制端进行补偿,实现了对车速的精确闭环控制。在弯道、环岛等路况下进行了实车实验。结果表明:该算法可以在5 s内控制车速从怠速快速跟踪到目标车速,总体平均误差为0.17 km/h。因而,该算法较传统的比例积分微分(PID)有更好的响应性、控制精度和抗扰性。  相似文献   

10.
针对现有研究多采用经验工况划分、主动悬架力简单分配等轮胎力解耦控制方法,难以实现车辆性能最优化的问题,提出了分层式轮胎纵-横-垂向力协同优化控制系统,在制定上层行驶期望目标和下层执行控制策略的同时,重点研究了中层轮胎纵-横-垂向力优化分配。建立了融合轮胎负荷率和垂向力动态系数的统一优化目标函数,综合考虑了车辆行驶期望目标、轮胎附着极限和执行器特性等约束条件,最终解决了轮胎纵、横、垂向力的协同优化控制难题。基于Matlab/Simulink和CarSim的联合仿真结果表明,提出的分层协同控制系统能同时有效控制车辆行驶姿态和改善车辆操纵稳定性能。  相似文献   

11.
基于动力学方法估计自动变速器坡道换挡控制所需的道路坡度和整车质量。建立7速双离合自动变速器动力学模型,利用卡尔曼滤波算法估计变速器输出轴转矩,将其作为道路坡度和整车质量估计算法的输入。基于整车纵向动力学方程,采用改进型递推最小二乘法设计道路坡度和整车质量实时估计算法。仿真和实车试验结果表明,开发的估计算法能在不增加传感器的前提下实现较为准确的道路坡度和整车质量估计。  相似文献   

12.
为了保证汽车的主动安全控制,需要准确地估计车辆行驶状态信息。针对目前汽车状态估计中由于技术条件限制和成本过高造成的部分参数无法测量或不易测量的问题,本文中利用低成本传感器,基于信息融合技术进行汽车行驶状态估计。建立了包括横摆、横向和纵向的3自由度非线性汽车动力学模型,同时为降低噪声对系统影响,建立了自适应无迹卡尔曼滤波(AUKF)的信息融合算法,给出车辆状态最小方差意义下的融合结果。利用纵向加速度、侧向加速度和转向盘转角等低成本传感器信号融合得到所需的难以测量的质心侧偏角、横摆角速度和纵向车速。通过Matlab/Simulink-CarSim联合仿真和实车试验对所研究的估计算法进行了试验验证。试验结果表明:该算法能够准确地估计汽车质心侧偏角、横摆角速度和纵向车速,且相比于无迹卡尔曼滤波(UKF),本算法提高了估计精度和实时性。  相似文献   

13.
为准确而实时地估计车辆状态参数,以利于车辆的稳定性控制,分别建立了基于线性轮胎模型和非线性轮胎模型的两种车辆模型,采用多模型交互(IMM)算法进行两种模型的切换以适应各种复杂路况,并将平方根容积卡尔曼滤波算法融合至IMM算法。考虑到车辆行驶过程中侧向加速度和路面附着系数对算法的影响,采用模糊算法对IMM算法中的模型转换概率进行实时修正,提高了模型切换速度和跟踪精度。Carsim-Matlab/simulink联合仿真和实车试验的结果表明,该算法车辆状态参数估计跟踪精度高,模型切换速度快,鲁棒性好。  相似文献   

14.
以某型8×8越野车辆为研究对象,对车辆的轮胎、悬架等关键模型进行了分析,得出了轮胎内压与轮胎刚度基本成线性关系的结论,建立了轮胎的粘弹性有限元模型;以多体动力学理论建立了车辆的8自由度动力学模型.对比分析了微分-代数方程组解法的优缺点,采用Gear算法实现了方程组的解算.实车试验与仿真结果对比表明,所建立的典型地形通过性仿真系统与实车测试有较好的吻合性.  相似文献   

15.
陈浩  袁良信  孙涛  郑四发  连小珉 《汽车工程》2020,42(2):199-205,256
针对电动轮汽车车速与道路坡度估计问题,本文中基于纵向非线性动力学方程设计1阶扩张状态观测器对车速与坡度进行联合估计,分析了估计稳态误差;同时,采用带遗忘因子的递归最小二乘估计算法分离加速度传感器信号中的坡度信息,并设置了比例系数来融合两类坡度信息,最终得到道路坡度估计值。搭建MATLAB/Simulink-Carsim联合仿真平台进行变坡度路面仿真,并在实际坡道路面完成实车测试。仿真与试验结果表明,所提出的方法简单、可行。  相似文献   

16.
针对车辆行驶过程中的状态估计问题,提出了基于强跟踪容积卡尔曼滤波的车辆行驶状态估计算法。建立了采用Dugoff轮胎模型非线性3自由度车辆估算模型,通过对纵向加速度、侧向加速度、横摆角速度、转向盘转角和车轮轮速低成本传感器信号的信息融合以实现对车辆行驶状态的准确估计。应用驾驶员模拟器进行在环试验结果表明,基于强跟踪容积卡尔曼滤波的估计算法能够较准确地对车辆行驶状态进行估计。  相似文献   

17.
为了得到轮胎力传递率结果,首先设计了试验,根据传递函数相关理论进行了严密的公式推导,得到了轮胎横向和垂向的力传递率计算公式,然后通过该试验方法和计算公式对正开发项目的 3种备选轮胎进行了试验,最后对试验结果进行对比分析。结果显示:设计的试验方法简单、有效,通过推导公式计算得到的轮胎力传递率结果准确,能为轮胎选择提供依据。  相似文献   

18.
基于加速度区间判断的坡道识别方法   总被引:2,自引:0,他引:2  
介绍了坡道识别的原理;在功率谱分析的基础上,设计了纵向加速度滤波算法,通过比较汽车在坡道上行驶时用加速度传感器测得的加速度数值与汽车纵向速度经差分后获得的加速度数值之间的差异,进行了基于加速度区间判断的坡道识别方法研究;完成了水平道路的加速度比较试验和坡道识别的实车试验,并在此基础上进行了基于坡道识别的换挡规律设计。实车试验结果表明:该方法能够进行坡道识别,并具有简单、实用、高效的优点;这种基于行驶环境识别的控制是未来汽车控制技术发展的方向。  相似文献   

19.
轮毂电机驱动车辆各轮转矩精确可控且响应迅速的特点适用于越野工况,但越野路面起伏不一且附着条件多变,因此,开发基于越野工况辨识的车辆驱动力控制策略,对提升轮毂电机驱动车辆的纵向行驶稳定性具有重要意义。基于动力学模型分析路面附着与路面几何特征,确定可用于越野工况辨识的车辆特征参数集;针对车轮悬空垂向载荷估计失真现象,且由于地面垂向力的实际变化导致车辆垂向载荷分配比例的改变,修正了垂向载荷的计算;利用各特征参数的差异与越野工况的映射关系判定工况属性,采用模糊识别法界定4种地形工况;驱动力控制上层考虑工况与驾驶员影响因素,通过越野工况辨识结果决策驱动利用系数,作为前馈期望转矩调节权重;中层通过四轮垂向载荷得到转矩分配系数,设计驱动力分配算法;下层针对车辆在越野工况下出现车轮滑转与悬空状态,对车轮进行动态转矩补偿。仿真测试与实车验证表明,越野工况辨识结果与预期相符,驱动力控制策略综合优化了车辆稳定性和动力性。  相似文献   

20.
刘浪  张志飞  鲁红伟  徐中明 《汽车工程》2022,44(2):247-255,297
为实现车辆在实际加减速行驶工况下路面不平度的准确识别,提出了一种考虑车辆加速度、基于增广卡尔曼滤波算法的路面识别方法.以车辆纵向加速度作为已知输入,车身垂向振动和俯仰振动响应作为观测向量,设计增广卡尔曼滤波观测器估计路面不平度信息;求取固定位移窗长度内的国际平整度指数,实现了对路面的等级分类.仿真结果表明在典型非匀速工...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号