首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 281 毫秒
1.
提出厚层材料改性的概念,对比常规包覆和厚层包覆对材料性能改善的差异,通过对材料的结构、形貌及电化学性能的表征,深入分析厚层包覆Mn Ox使富锂二元材料电化学性能得到明显提高的原因。厚层包覆材料0.1Mn Ox·0.9Li[Ni_(0.2)Li_(0.2)Mn_(0.6)]O_2的XRD图谱和HRTEM图像观察到包覆层厚度达20 nm,且包覆层中存在少量的尖晶石结构。电化学测试结果得出,厚层包覆材料具有较高的首次库伦效率(90.2%),较高的可逆容量(30周循环容量保持在265m Ahg~(-1)),同时循环其低倍率性能相比于本体材料和常规包覆材料同样有很大的提升(1C下放电比容量238m Ahg~(-1),2C下222m Ahg~(-1))。  相似文献   

2.
采用溶胶凝胶法制备二元富锂材料Li[Ni_(0.2)Li_(0.2)Mn_(0.6)]O_2。用不同浓度的H_3PO_4对二元富锂材料进行表面酸处理改性。通过电化学测试发现经浓度1%的H_3PO_4溶液处理后的材料(P_1)表现出最佳的循环性能(30周循环后放电比容量为217.4mAhg~(-1))和倍率性能(5C倍率首次放电比容量为94.0mAhg~(-1))。  相似文献   

3.
采用草酸盐共沉淀法合成Li_(1.2)Mn_(0.6-x)Ni_(0.2)Y_xO_2(x=0,0.01,0.03,0.05)富锂正极材料,即在二元材料Li_(1.2)Mn_(0.6)Ni_(0.2)O_2中掺杂不同量的Y替代Mn,通过XRD、SEM测试,对材料的结构和形貌进行表征。在电化学性能测试中发现,改性材料Li_(1.2)Mn_(0.57)Ni_(0.2)Y_(0.03)O_2的首次放电比容量达280.1mAhg~(-1)。在充放电循环测试中,该材料的容量保持率较高,40周循环后容量保持在240.7mAhg~(-1)。而在倍率性能测试中,相比原始材料,Li_(1.2)Mn_(0.57)Ni_(0.2)Y_(0.03)O_2更是有较大的提升,在5C条件下放电比容量从29.4 mAhg~(-1)提高至89.9 mAhg~(-1)。然而该材料的首次库伦效率还有待提高。  相似文献   

4.
采用溶胶凝胶法制备本体富锂锰基锂离子电池正极材料Li [Ni_(0.2)Li_(0.2)Mn_(0.6)]O_2。用锂离子导电性好的Li_3PO_4对本体材料进行表面包覆改性。由于锂离子导电性好的Li_3PO_4包覆相与微量三维锂离子传导的尖晶石结构的存在,显著改善了材料的导电性能;由于Li_3PO_4的电化学结构稳定,与电解液的相容性较好,可减少正极材料与电解液的接触面积,有效抑制锰离子的溶解,因此能稳定材料的结构,改善材料的循环和倍率性能;此外,电化学传递阻抗在包覆后得到显著降低。  相似文献   

5.
正极材料是锂离子电池最重要的组成部分之一。传统正极材料(LiCoO_2、LiNiO_2等)由于对环境有污染、成本高、资源有限,不能成为新一代锂离子电池正极材料的首选。层状正极材料一直以来是锂离子电池正极材料研究的热点之一,新发现的类Li2MnO_3层状材料由于比容量高而备受人们的关注。但是类Li2MnO_3正极材料的合成、结构及电极过程动力学等电化学性质的研究有待深入。本文选取Li_(1.2)Mn_(0.6)Ni_(0.2)O_2作为研究对象,对材料进行包覆改性来提高材料的电化学性能。  相似文献   

6.
为了拓宽选择性催化还原NO_x钒基催化剂的活性温度窗口,采用溶液燃烧合成法制备了TiV_(0.1)O_x催化剂,依次加入Mn元素与Er元素形成新的催化剂,分别对它们进行了SCR活性及选择性测试,发现负载Mn元素可以提高钒基催化剂的低温活性,同时也会降低钒基催化剂的高温活性,负载适量的Er元素可以提高钒基催化剂的高温活性和N_2选择性。利用N2吸附脱附法进行BET比表面积和孔容孔径分析,发现负载Er元素增大了比表面积,进而提升了催化剂活性。利用X射线衍射(XRD)图谱进行晶体结构分析,所有催化剂样品均没有发现VO_x,MnO_x或ErO_x的衍射峰,说明溶液燃烧法制备的催化剂活性组分在TiO2颗粒上呈无定型态分布,分散度高。最终优选出最佳Mn和Er比例的TiV_(0.1)Mn_(0.1)Er_(0.01)O_x催化剂,在160~470℃之间保持80%以上的NO_x去除率。  相似文献   

7.
将微米级LiNi_(0. 8)Co_(0. 1)Mn_(0. 1)O_2和纳米级LiFePO_4进行球磨混合,以形成LFP包覆在NCM表面的混合材料,并进行材料的形貌、结构以及电化学性能的分析和测试。结果显示,混合材料具有协同效应。  相似文献   

8.
本文中以电动车用额定容量为30 A·h的三元软包LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2(NCM622)锂离子动力电池单体为研究对象,研究其在不同充电倍率条件下的行为特性。结果表明,锂离子电池过充过程可分为4个阶段;电池表面最高温度位置不是固定不变的;在大部分测试时间内,最大温差(MTD)都小于1℃;充电倍率对锂离子电池过充行为特性影响较大,随着充电倍率的增加,热失控最高温度和峰值电压升高,而过充测试时间和测试结束时的荷电状态(SOC)随着充电倍率的升高而降低。本研究为富镍锂离子动力电池的安全性设计和电池管理系统(BMS)对过充故障的安全管理提供了参考。  相似文献   

9.
扩散应力易引起电极体积变化、电极颗粒破裂和脱落,导致电极材料失效,从而引起锂离子电池容量的衰减。为探究不同材料厚度和放电倍率下的扩散应力规律以及扩散应力与微观结构破坏间的关联性,采用试验与仿真相结合的方法进行相关研究。首先,制备3种不同厚度(25、36、48 μm)的石墨负极,与三元正极组装成纽扣全电池;其次,以相同充电倍率(0.2C)、不同放电倍率(1C、2C、5C)在25℃下进行循环测试,为模型验证及微观测试提供样本;随后,根据电化学及扩散力学原理建立电化学-力耦合模型,并通过不同倍率放电工况对模型进行验证;进一步,利用控制变量法,基于所建模型研究不同材料厚度与放电倍率下扩散应力的规律;最后,基于电镜扫描和X射线衍射测试,对循环后的负极形貌及微观结构进行表征,结合模型仿真研究扩散应力与负极微观结构的破坏关联性。研究结果表明:随着放电倍率增大或材料厚度减小,扩散应力增大、负极损坏程度加深,可根据拉伸屈服强度将扩散应力与微观结构变化关系分为2个阶段;进一步,引入剥落指数定量描述微观结构失效,发现剥落指数与扩散应力之间存在幂函数关系。研究结果可为揭示扩散应力与容量损失之间的关联性提供思路。  相似文献   

10.
正(接上期)2.三元锂电池三元聚合物锂电池是指正极材料使用锂镍钴锰三元正极材料的锂电池。三元复合正极材料前驱体产品,是以镍盐、钴盐、锰盐为原料,在容量与安全性方面比较均衡的材料,循环性能好于正常钴酸锂。前期由于技术原因其标称电压只有3.5~3.6V,在使用范围方面有所限制,但到目前,随着配方的不断改进和结构完善,电池的标称电压已达到3.7V,在容量上已经达到或超过钴酸锂电池水平。  相似文献   

11.
实验研究了辐射加热器非接触式触发动力锂离子电池热失效过程中的温度特性、质量损失、产热行为变化等特性及其空间射流温度与热流分布特性。以50 Ah的Li(Ni0.6Co0.2Mn0.2) O2电池为对象,基于锂离子电池燃烧实验平台进行。结果表明:电池热失控实验过程中发生了2次喷发现象,电池表面最高温度为489.2℃;最高温升速率为27.7 K·s-1;最大质量损失速率为32.7 g·s-1;电池本体总产热量为1.05 MJ;环境最高温度为705.3℃;烟气总释放热为6.56 MJ·m-2;射流空间环境最高温度比电池表面最高温度高。这表明,高温高速的易燃气体会加剧热失控危害的风险。本结果有助于电池失效初期预警、热失控抑制、火灾风险控制。  相似文献   

12.
(2)翼板型空气流量计信号电压波形采样 [操作顺序1]设置测量条件为0.5V·1s。对其他类型示波器,可以试一试0.2s或0.5s。 [操作顺序2]按图34a的样子设置探头。 [操作顺序3]将钥匙点火开关置于ON位置,然后用铅笔一类的东西匀速推压翼板,如图34b所示。示波器画面上出现信号电压波形后停住画面。  相似文献   

13.
10.2.6 年日常费用计算 (1) 工艺材料费用 S_M=Q_y·q_PJ_M=10~7×25×10~3×0.2=50000元 式中:J_M-砂子价格,J_M=25000元/kg。 (2) 工资费用 S′_z=1C′_rT_yλK_p=0.659×937×1.1×1.25=849元 S″_z=C″_rT_yλK_p=0.729×937×1.1×1.25=940元 式中:C_T-驾驶员小时工资率,C′_T=0.659元/h;C″_T=0.729元/h;K_p-工资率的修正系数,K_p=1.1;λ-考虑奖金的系数,λ=1.25。 (3) 大修费用 S′_(KP)=A_(KP)·F′_K=0.042×24613=1034元  相似文献   

14.
(接上期)2.4铅电极在Eu2(SO4)3硫酸溶液中的交流阻抗特性交流阻抗技术是研究电极界面信息和动力学过程的一种电化学测试技术,通过在很宽的频率范围对测定电极反应体系进行测量,确定EIS的等效电路或数学模型,得到溶液电阻、电荷传递电阻、双电层充电电容等电化学参数,从而能推测电极系统中包含的动力学过程和机理[22]。一个反应体系的动力学过程在交流阻抗谱图上能反映出来,一般来说,如果体系的动力学过程较快,也就是体系受扩散控制时,浓差极化较大,在给定的频率范围内阻抗谱是一条直线;当一个体系的动力学过程进行得很慢时,体系主要是受电荷转移电阻和法拉第充电电容控制,在阻抗谱图上将表现出一个半圆;若体系的动力学过程和活性离子的扩散速度相当,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号