共查询到20条相似文献,搜索用时 15 毫秒
2.
对纯电动汽车的空调PTC(PositiveTemperatureCoefficient,正温度系数)加热器控制方案进行设计,合理降低低温工况高压负载的功率,从而降低低温工况整车能耗,提高整车低温工况续驶里程。通过控制两个固定功率的PTC工作时间,实现空调3挡位制热;1挡、2挡制热功率为固定值,3挡制热功率因环境温度的变化而变化,环境温度越低,制热功率越大,环境温度低于某一阈值时,制热功率达到最大,最大总功率等于两个PTC功率之和;除霜模式时,PTC工作的功率为最大总功率。经试验验证,制热功能符合设计要求。 相似文献
3.
4.
5.
6.
7.
为减少电动汽车制热能耗,基于热泵系统制热性能试验,提出热泵系统制热在-20~5℃环境温度范围内均存在制热性能分区,制定了PTC在制热低效区提前介入的热泵PTC耦合制热策略,利用AMESim搭建的系统模型进行仿真并与传统策略进行了对比研究。与采用6 000 r/min转速热泵辅助278.95 W PTC制热功率相比,采用转速4 700 r/min热泵辅助462.11 W PTC制热综合能耗低6.4%,二者均能使车内温度稳定在24℃。相比于单一热泵制热,采用PTC提前介入的热泵PTC耦合制热策略具有加热快、能耗低、转速低等优势,-10℃环境温度下车内目标温度为20℃时,调节过程中能耗最多降低9.4%,稳定后降低2.8%。采用PTC提前介入策略时压缩机转速应尽可能接近高效区临界转速,此策略在不改变系统结构的基础上可明显提升制热效率和舒适性。 相似文献
8.
9.
10.
针对现有电动汽车高压加热器的缺陷,文章对其控制方式进行了改进,设计了一种采用功率模块高低双边双路控制、具有一定故障保护策略的加热控制器,提高了控制性能和可靠性。 相似文献
11.
正动力电池管理系统(BMS)对于保障电动汽车电池组的安全及使用寿命,最大限度发挥电池系统效能具有重要作用。本文列举了电动汽车动力电池管理系统的常见故障,针对其可能原因进行了简单的分析,并提供了常见的分析思路和处理方法,供参考。一、动力电池管理系统介绍动力电池管理系统(BMS)通常 相似文献
12.
13.
14.
15.
16.
文章通过对电动汽车动力性能试验方法进行简要介绍,并对其与燃油车的动力性能试验方法进行对比,与电动汽车能耗试验方法进行对比,并对相互之间的差异进行总结,结合我国当前电动汽车产业发展和技术进步,从试验质量、试验项目以及试验场所等方面提出了电动汽车动力性能试验方法的优化方向,为电动汽车的动力性能试验方法的改进提供参考. 相似文献
17.
18.
20.