共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
针对电池SOC初值误差较大时,无迹卡尔曼滤波收敛较慢的问题,本文提出了改进的无迹卡尔曼滤波算法。介绍了3种常用的电池等效电路模型,通过对电池的EIS分析,确立了磷酸铁锂电池的Thevenin模型并辨识了模型参数。分析出无迹卡尔曼滤波在初值误差较大时收敛较慢的问题,在此基础上提出了改进的无迹卡尔曼滤波算法。通过实验可以看出,改进算法不仅克服了无迹卡尔曼滤波收敛速度慢的问题,而且提高了估计精度;使用改进算法对老化过程中的电池进行SOC估计,最大估计误差在4%以内,可以满足电动汽车的使用要求。 相似文献
4.
5.
7.
8.
基于PNGV改进模型的SOC估计算法 总被引:1,自引:0,他引:1
《汽车工程》2015,(5)
基于磷酸铁锂动力电池改进的PNGV等效电路模型,提出了卡尔曼滤波法结合安时积分法估算电池荷电状态(SOC)的方法。该模型考虑了温度、自放电等因素对模型参数的影响,在Matlab/Simulink中建立了仿真模型,通过对比采用卡尔曼滤波法结合安时积分法和单独采用安时积分法估计得到的电池SOC值,表明PNGV改进模型能真实地反映电池特性,并能在允许的误差范围内准确估计电池的SOC。 相似文献
9.
10.
准确估计锂离子电池荷电状态(SOC)对于突破电动汽车发展瓶颈,推动电动汽车商业化至关重要。针对动力电池模型参数辨识问题,提出基于遗忘因子的递推最小二乘法(FRLS)的模型参数在线识别方法。实时测量动力电池电流和电压数据,在线辨识模型参数并实时更新,实时反映电池内部参数的变化过程,对电池动态特性进行实时模拟。针对容积卡尔曼(CKF)滤波过程中对噪声敏感的问题,提出一种基于随机加权思想的自适应容积卡尔曼滤波(ARWCKF)方法。相比于常规CKF容积点权值始终不变,通过引入随机加权因子,自适应调整容积点权值并对系统噪声、状态向量及观测向量进行预测,抑制系统噪声对状态估计的干扰,避免因容积点权重值固定所带来的误差。针对CKF算法在容积点计算过程中由于状态方差矩阵失去正定性导致的平方根分解无法使用的问题,提出基于奇异值分解的容积点计算方法,克服由于先验协方差矩阵负定性变化而导致的滤波精度下降等问题,并进行多种工况、温度下不同SOC初值的对比验证。结果表明:所提出的基于遗忘因子的递推最小二乘法的在线参数辨识及ARWCKF滤波方法具备良好的估计精度及收敛能力,最大电压估计误差不超过40 mV,SOC估计误差不超过1%。 相似文献
11.
电池荷电状态(SOC)值是电池状态的一个关键指标,它是多项控制策略的前提。SOC不是直接测量获得,可以用其它间接方式来估计。文章简要介绍了SOC的定义及其影响因素,简述了几种常用的SOC估算方法,并对各种方法的优缺点和适用场合比较分析,对SOC估算方法进行了展望。 相似文献
12.
为减少工业常用荷电状态(SOC)估计方法——安时法的累积误差,提出一种实时校正的锂离子电池SOC估计方法。在0~60℃,放电倍率1 C、2 C、3 C和0.33 C下,进行锂离子电池放电实验,测量了电压、电流、温度,建立了锂离子电池放电数据库。从该库获取上述放电温度、放电倍率范围,SOC值为20%、80%时的开路电压,以此两点引入一条关于电压与SOC的直线。以该直线上某点电压所对应SOC作为修正项,并引入修正因子α,来校正安时法所得剩余电量SOC估计值。与实验值对比,该SOC估计结果的误差小于4%,符合工业需求。 相似文献
13.
14.
为实时监测车用锂离子动力电池内部温度,提高电池性能,提出了一种非线性无迹Kalman滤波(UKF)估计算法。对某一2.6 Ah三元单体锂离子电池,建立等效可变参数热模型;用状态方程分析法,建立电池内部外部温度的关联并离散化;用递推最小二乘法(RLS)辨识热模型中时间、表面温度、环境温度、输入电流4种热参数,实时更新系统状态与观测方程的参数矩阵,结合UKF算法,实现电池内部温度估计。通过Matlab搭建仿真模型,用混合动力脉冲能力特性(HPPC)、动态应力测试(DST)以及恒流3种工况,来验证算法精度。结果表明:对于这3种工况,该UKF算法均可在1℃内估计电池内部温度。 相似文献
15.
17.
针对锂电池不同使用场合下的剩余电量估算精度的问题,提出了基于内阻功率的放电策略与功率积分的电池剩余电量计算方法。选取电池的1阶Thevenin等效电路模型,通过放电实验确定电池内部参数,建立了电池的可变参数模型。依据电池不同使用需求,通过功率控制电池放电电流,稳定电池的容量,提升了安时积分算法在稳定放电工况下的鲁棒性;将电池的温度、高频率波动电流和健康状况引入积分项,以衡量电池容量消耗速率,并采用功率积分算法估算电池剩余容量。将积分算法与EKF结合,减弱了积分误差对估算精度的影响。搭建实验台架,设计锂电池的放电工况,采用与之对应的放电策略和计算方法。结果表明:本文的方法有效地提升了电池剩余电量的估算精度。 相似文献
18.
精确估计锂电池荷电状态(SOC)对纯电动汽车的安全稳定行驶有着深远影响,对锂电池SOC状态的估计主要有参数辨识算法和SOC估计算法两个热点问题。针对辨识过程中出现的“数据饱和”现象以及锂电池SOC状态估计时的滤波发散问题,文章提出了自适应遗忘因子递推最小二乘法(ARWLS)-自适应无迹卡尔曼滤波(AUKF)联合算法。首先建立了二阶R-C锂电池数学模型,并针对传统最小二乘法在参数辨识过程中出现的“数据饱和”现象,引入了自适应遗忘因子动态修正新旧数据权重,提升在线参数辨识的准确度以及效率。其次,针对无迹卡尔曼滤波存在的滤波失效问题,提出了自适应无迹卡尔曼滤波算法来自适应调整系统噪声和观测噪声,从而提高SOC估计时的适应性和鲁棒性。最后在混合动力脉冲能力特性(HPPC)工况下对扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)和AUKF三种SOC估计算法进行仿真比较,仿真结果表明,AUKF算法估计的SOC曲线跟随SOC真实值曲线变化的性能最好,估计精度也优于其他两种算法,具有更小的估计误差,收敛性也最好。 相似文献
19.
针对传统无迹卡尔曼滤波算法在估计电池荷电状态中存在收敛速度较慢、容易发散等问题,提出了一种改进的自适应无迹卡尔曼滤波算法,该算法在传统无迹卡尔曼滤波算法基础上引入了衰减因子和自适应调节因子,提高估计精度和收敛速度。以二阶RC模型为基础,运用最小二乘法对模型参数进行辨识,采用基于UT变换的自适应无迹卡尔曼滤波器算法实现对锂电池SOC的估计。搭建锂电池充放电试验平台,测试试验结果表明,该算法对锂电池SOC估计精度小于1%,在估计精度及收敛速度上均优于传统无迹卡尔曼滤波算法。 相似文献
20.
针对动力电池SOC估计过程中,电压观测数据容易出现野值干扰的问题,提出了改进UKF算法,将观测噪声模型修正为归一化受污染正态分布模型,利用贝叶斯定理计算野值出现的后验概率,以此作为加权系数自适应地调整滤波增益和状态协方差。该方法能有效克服野值干扰问题。但在SOC初值设定存在误差情况下,该方法会将电压观测数据中的正常值误视为野值,而仅以很小的滤波增益控制量进行调整,导致算法收敛慢甚至引起发散。因此,在算法初始阶段又引入了基于强跟踪原理的次优渐消因子对目标进行快速跟踪,弥补上述单纯抗野值方法的不足。试验验证结果表明,改进UKF算法鲁棒性强,具有很好的跟踪速度和精度,为动力电池SOC估计过程中抗野值干扰提供了一种新的方法。 相似文献