共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mengxuan Song Nan Wang Timothy Gordon 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2019,57(8):1090-1107
ABSTRACTThis paper studies the low-speed manoeuvring problem for autono-mous ground vehicles operating in complex static environments. Making use of the intrinsic property of a fluid to naturally find its way to an outflow destination, a novel guidance method is proposed. In this approach, a reference flow field is calculated numerically through Computational Fluid Dynamics, based on which both the reference path topology and the steering reference to achieve the path are derived in a single process. Steering control considers three constraints: obstacle and boundary avoidance, rigidity of the vehicle, plus the non-holonomic velocity constraints due to the steering system. The influences of the parameters used during the flow field simulation and the control algorithm are discussed through numerical cases. A divergency field is defined to evaluate the quality of the flow field in guiding the vehicle. This is used to identify any problematic branching features of the flow, and control is adapted in the neighbourhood of such branching features to resolve possible ambiguities in the control reference. Results demonstrate the effectiveness of the method in finding smooth and feasible motion paths, even in complex environments. 相似文献
3.
Abdelkader Merah Kada Hartani Azeddine Draou 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2016,54(1):86-101
In recent years, the driver's active assistances have become important features in commercialised vehicles. In this paper, we present one of these features which consists of an advanced driver assistance system for lane keeping. A thorough analysis of its performance and stability with respect to variations in driver behaviour will be given. Firstly, the lateral control model based on visual preview is established and the kinematics model based on visual preview, including speed and other factors, is used to calculate the lateral error and direction error. Secondly, and according to the characteristics of the lateral control, an efficient strategy of intelligent electric vehicle lateral mode is proposed. The integration of the vehicle current lateral error and direction error is chosen as the parameter of the sliding mode switching function to design the sliding surface. The control variables are adjusted according to the fuzzy control rules to ensure that they meet the existence and reaching condition. A new fuzzy logic-based switching strategy with an efficient control law is also proposed to ensure a level of continuous and variable sharing according to the state of the driver and the vehicle positioning on the roadway. The proposed control law acts either at the centre of the lane, as a lane keeping assistance system to reduce the driver's workload for long trips, or as a lane departure avoidance system that intervenes for unintended lane departures. Simulation results are included in this paper to explain this concept. 相似文献
4.
T.J. Gordon M. Lidberg 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2015,53(7):958-994
In recent years, road vehicle automation has become an important and popular topic for research and development in both academic and industrial spheres. New developments have received extensive coverage in the popular press, and it may be said that the topic has captured the public imagination. Indeed, the topic has generated interest across a wide range of academic, industry and governmental communities, well beyond vehicle engineering; these include computer science, transportation, urban planning, legal, social science and psychology. While this follows a similar surge of interest – and subsequent hiatus – of Automated Highway Systems in the 1990s, the current level of interest is substantially greater, and current expectations are high. It is common to frame the new technologies under the banner of ‘self-driving cars’ – robotic systems potentially taking over the entire role of the human driver, a capability that does not fully exist at present. However, this single vision leads one to ignore the existing range of automated systems that are both feasible and useful. Recent developments are underpinned by substantial and long-term trends in ‘computerisation’ of the automobile, with developments in sensors, actuators and control technologies to spur the new developments in both industry and academia. In this paper, we review the evolution of the intelligent vehicle and the supporting technologies with a focus on the progress and key challenges for vehicle system dynamics. A number of relevant themes around driving automation are explored in this article, with special focus on those most relevant to the underlying vehicle system dynamics. One conclusion is that increased precision is needed in sensing and controlling vehicle motions, a trend that can mimic that of the aerospace industry, and similarly benefit from increased use of redundant by-wire actuators. 相似文献
5.
Xiangkun He Yulong Liu Chen Lv 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2019,57(8):1163-1187
ABSTRACTCollision avoidance and stabilisation are two of the most crucial concerns when an autonomous vehicle finds itself in emergency situations, which usually occur in a short time horizon and require large actuator inputs, together with highly nonlinear tyre cornering response. In order to avoid collision while stabilising autonomous vehicle under dynamic driving situations at handling limits, this paper proposes a novel emergency steering control strategy based on hierarchical control architecture consisting of decision-making layer and motion control layer. In decision-making layer, a dynamic threat assessment model continuously evaluates the risk associated with collision and destabilisation, and a path planner based on kinematics and dynamics of vehicle system determines a collision-free path when it suddenly encounters emergency scenarios. In motion control layer, a lateral motion controller considering nonlinearity of tyre cornering response and unknown external disturbance is designed using tyre lateral force estimation-based backstepping sliding-mode control to track a collision-free path, and to ensure the robustness and stability of the closed-loop system. Both simulation and experiment results show that the proposed control scheme can effectively perform an emergency collision avoidance manoeuvre while maintaining the stability of autonomous vehicle in different running conditions. 相似文献
6.
A. Mortazavi A. Eskandarian R. A. Sayed 《International Journal of Automotive Technology》2009,10(3):391-404
Driver drowsiness is a major safety concern, especially among commercial vehicle drivers, and is responsible for thousands
of accidents and numerous fatalities every year. The design of a drowsiness detection system is based on identifying suitable
driver-related and/or vehicle-related variables that are correlated to the driver’s level of drowsiness. Among different candidates,
vehicle control variables seem to be more promising since they are unobtrusive, easy to implement, and cost effective. This
paper focuses on in-depth analysis of different driver-vehicle control variables, e.g., steering angle, lane keeping, etc.
that are correlated with the level of drowsiness. The goal is to find relationships and to characterize the effect of a driver’s
drowsiness on measurable vehicle or driving variables and set up a framework for developing a drowsiness detection system.
Several commercial drivers were tested in a simulated environment and different variables were recorded. This study shows
that drowsiness has a major impact on lane keeping and steering control behavior. The correlation of the number and type of
accidents with the level of drowsiness was also examined. Significant patterns in lateral position variations and steering
corrections were observed, and two phases of drowsiness-related degradation in steering control were identified. The two steering
degradation phases examined are suitable features for use in drowsiness detection systems. 相似文献
7.
Jiechao Liu Paramsothy Jayakumar Jeffrey L. Stein 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2016,54(11):1629-1650
This paper investigates the level of model fidelity needed in order for a model predictive control (MPC)-based obstacle avoidance algorithm to be able to safely and quickly avoid obstacles even when the vehicle is close to its dynamic limits. The context of this work is large autonomous ground vehicles that manoeuvre at high speed within unknown, unstructured, flat environments and have significant vehicle dynamics-related constraints. Five different representations of vehicle dynamics models are considered: four variations of the two degrees-of-freedom (DoF) representation as lower fidelity models and a fourteen DoF representation with combined-slip Magic Formula tyre model as a higher fidelity model. It is concluded that the two DoF representation that accounts for tyre nonlinearities and longitudinal load transfer is necessary for the MPC-based obstacle avoidance algorithm in order to operate the vehicle at its limits within an environment that includes large obstacles. For less challenging environments, however, the two DoF representation with linear tyre model and constant axle loads is sufficient. 相似文献
8.
Jiechao Liu Paramsothy Jayakumar Jeffrey L. Stein 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2018,56(6):853-882
This paper presents a nonlinear model predictive control (MPC) formulation for obstacle avoidance in high-speed, large-size autono-mous ground vehicles (AGVs) with high centre of gravity (CoG) that operate in unstructured environments, such as military vehicles. The term ‘unstructured’ in this context denotes that there are no lanes or traffic rules to follow. Existing MPC formulations for passenger vehicles in structured environments do not readily apply to this context. Thus, a new nonlinear MPC formulation is developed to navigate an AGV from its initial position to a target position at high-speed safely. First, a new cost function formulation is used that aims to find the shortest path to the target position, since no reference trajectory exists in unstructured environments. Second, a region partitioning approach is used in conjunction with a multi-phase optimal control formulation to accommodate the complicated forms the obstacle-free region can assume due to the presence of multiple obstacles in the prediction horizon in an unstructured environment. Third, the no-wheel-lift-off condition, which is the major dynamical safety concern for high-speed, high-CoG AGVs, is ensured by limiting the steering angle within a range obtained offline using a 14 degrees-of-freedom vehicle dynamics model. Thus, a safe, high-speed navigation is enabled in an unstructured environment. Simulations of an AGV approaching multiple obstacles are provided to demonstrate the effectiveness of the algorithm. 相似文献
9.
H. G. Jung Y. H. Lee H. J. Kang J. Kim 《International Journal of Automotive Technology》2009,10(2):219-228
This paper discusses the market trends and advantages of a safety system integrating LKS (Lane Keeping System) and ACC (Adaptive
Cruise Control), referred to as the LKS+ACC system, and proposes a method utilizing the range data from ACC for the sake of
lane detection. The overall structure of lane detection is the same as the conventional method using monocular vision: EDF
(Edge Distribution Function)-based initialization, sub-ROI (Region Of Interest) for left/right and distance-based layers,
steerable filter-based feature extraction, and model fitting in each sub-ROI. The proposed method adds only the system for
confining lane detection ROI to free space that is established by range data. Experimental results indicate that such a simple
adaptive ROI can overcome occlusion of lane markings and disturbance of neighboring vehicles. 相似文献
10.
11.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(5):704-732
A fault classification method is proposed which has been applied to an electric vehicle. Potential faults in the different subsystems that can affect the vehicle directional stability were collected in a failure mode and effect analysis. Similar driveline faults were grouped together if they resembled each other with respect to their influence on the vehicle dynamic behaviour. The faults were physically modelled in a simulation environment before they were induced in a detailed vehicle model under normal driving conditions. A special focus was placed on faults in the driveline of electric vehicles employing in-wheel motors of the permanent magnet type. Several failures caused by mechanical and other faults were analysed as well. The fault classification method consists of a controllability ranking developed according to the functional safety standard ISO 26262. The controllability of a fault was determined with three parameters covering the influence of the longitudinal, lateral and yaw motion of the vehicle. The simulation results were analysed and the faults were classified according to their controllability using the proposed method. It was shown that the controllability decreased specifically with increasing lateral acceleration and increasing speed. The results for the electric driveline faults show that this trend cannot be generalised for all the faults, as the controllability deteriorated for some faults during manoeuvres with low lateral acceleration and low speed. The proposed method is generic and can be applied to various other types of road vehicles and faults. 相似文献
12.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(11):991-1011
A robust nonparametric approach to vehicle stability control by means of a four-wheel steer by wire system is introduced. Both yaw rate and sideslip angle feedbacks are used in order to effectively take into account safety as well as handling performances. Reference courses for yaw rate and sideslip angle are computed on the basis of the vehicle speed and the handwheel angle imposed by the driver. An output multiplicative model set is used to describe the uncertainty arising from a wide range of vehicle operating situations. The effects of saturation of the control variables (i.e. front and rear steering angles) are taken into account by adopting enhanced internal model control methodologies in the design of the feedback controller. Actuator dynamics are considered in the controller design. Improvements on understeer characteristics, stability in demanding conditions such as turning on low friction surfaces, damping properties in impulsive manoeuvres, and improved handling in closed loop (i.e. with driver feedback) manoeuvres are shown through extensive simulation results performed on an accurate 14 degrees of freedom nonlinear model, which proved to give good modelling results as compared with collected experimental data. 相似文献
13.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(8):1017-1046
The new vehicle platforms for electric vehicles (EVs) that are becoming available are characterised by actuator redundancy, which makes it possible to jointly optimise different aspects of the vehicle motion. To do this, high-level control objectives are first specified and solved with appropriate control strategies. Then, the resulting virtual control action must be translated into actual actuator commands by a control allocation layer that takes care of computing the forces to be applied at the wheels. This step, in general, is quite demanding as far as computational complexity is considered. In this work, a safety-oriented approach to this problem is proposed. Specifically, a four-wheel steer EV with four in-wheel motors is considered, and the high-level motion controller is designed within a sliding mode framework with conditional integrators. For distributing the forces among the tyres, two control allocation approaches are investigated. The first, based on the extension of the cascading generalised inverse method, is computationally efficient but shows some limitations in dealing with unfeasible force values. To solve the problem, a second allocation algorithm is proposed, which relies on the linearisation of the tyre–road friction constraints. Extensive tests, carried out in the CarSim simulation environment, demonstrate the effectiveness of the proposed approach. 相似文献
14.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(6):759-775
The DLR research project Next Generation Train deals with concepts, methods and technologies for a very high-speed train in double-deck configuration and light-weight design. Due to these three key features, crosswind stability is a particular subject of study. It is shown that conventional approaches here fall short of guaranteeing safety in high-wind occurrences according to the given homologation standards. Therefore, this paper discusses the feasibility of different approaches to ensure crosswind stability by means of active control. Four different concepts are overviewed, the most promising one is then chosen und examined in detailed multibody simulations that are based on data from wind tunnel measurements of the Next Generation Train. 相似文献
15.
Shuqi Song Peng Han Dong Zou 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2018,56(1):113-127
The rail is modelled as a simply supported beam in the vehicle–track coupled dynamics. The beam is formulated by a partial differential equation that is transformed into an ordinary differential equation by the method of mode superposition for numerical calculation. However, the size of the matrix that is formed by the mode-superposition method increases significantly with track length, which limits the calculation efficiency. Some methods have been developed to solve this calculation issue, but they diminish the merits of the vehicle–track coupled dynamics, which would systematically investigate the dynamics of a vehicle and a track from the entire vehicle–track system. A new method is developed to resolve this contradiction. First, a theory based on a sliding window is established to improve the computational stability with respect to the length and the window-movement ratio. Then, two methods, namely finite element method analysis and an analytical solution, are used to verify the accuracy of the new method, which is highly efficient when used in a vertical half-vehicle–track coupled model to calculate the vehicle response when the vehicle moves on a long track. The results of the vehicle response calculated with and without the sliding window show good consistency. 相似文献
16.
In a connected vehicle environment, vehicles are able to communicate and exchange detailed information such as speed, acceleration, and position in real time. Such information exchange is important for improving traffic safety and mobility. This allows vehicles to collaborate with each other, which can significantly improve traffic operations particularly at intersections and freeway ramps. To assess the potential safety and mobility benefits of collaborative driving enabled by connected vehicle technologies, this study developed an optimization-based ramp control strategy and a simulation evaluation platform using VISSIM, MATLAB, and the Car2X module in VISSIM. The ramp control strategy is formulated as a constrained nonlinear optimization problem and solved by the MATLAB optimization toolbox. The optimization model provides individual vehicles with step-by-step control instructions in the ramp merging area. In addition to the optimization-based ramp control strategy, an empirical gradual speed limit control strategy is also formulated. These strategies are evaluated using the developed simulation platform in terms of average speed, average delay time, and throughput and are compared with a benchmark case with no control. The study results indicate that the proposed optimal control strategy can effectively coordinate merging vehicles at freeway on-ramps and substantially improve safety and mobility, especially when the freeway traffic is not oversaturated. The ramp control strategy can be further extended to improve traffic operations at bottlenecks caused by incidents, which cause approximately 25% of traffic congestion in the United States. 相似文献
17.
Wei Liu Fengchun Sun Hong Wang 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2019,57(1):134-159
This paper provides a complete design solution about adaptive optimal shaking vibration control for electric vehicles. A general 4-DOF and 5-order linear torsional vibration model is established under given wheel speed, and the frequency characteristics of the vibration system are elaborately analysed in terms of variation of wheel speed and different model parameters. Aiming at decreasing the shaking vibration at the least sacrifice of acceleration loss, and improving the robustness of the system against external disturbance, a combination of feed-forward and feed-backward adaptive control structure is proposed. Further, a non-linear multi-constraint optimisation problem is formulated for solving the optimal adaptive control variables within the two-dimensional design space composed of the wheel speed and driver's torque command. Furthermore, the distribution of the optimal adaptive control variables within the design space and its extended application under different tyre road conditions are discussed. Eventually, several simulation test cases are particularly designed to verify the performances of the controller on all aspects. Test results show that the optimal adaptive controller achieves satisfactory anti-shaking vibration, acceleration maintaining and robustness performances within the whole adaptive design space as desired. 相似文献
18.
《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2012,50(3):321-337
In this article, a new drivetrain configuration of a parallel hybrid electric vehicle is considered and a novel model-based control design strategy is given. In particular, the control design covers the speed synchronisation task during a restart of the internal combustion engine. The proposed multivariable synchronisation strategy is based on feedforward and decoupled feedback controllers. The performance and the robustness properties of the closed-loop system are illustrated by nonlinear simulation results. 相似文献
19.
Shenjin Zhu 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2017,55(8):1206-1240
Conventional vehicle stability control (VSC) systems are designed for average drivers. For a driver with a good driving skill, the VSC systems may be redundant; for a driver with a poor driving skill, the VSC intervention may be inadequate. To increase safety of sport utility vehicles (SUVs), this paper proposes a novel driver-adaptive VSC (DAVSC) strategy based on scaling the target yaw rate commanded by the driver. The DAVSC system is adaptive to drivers’ driving skills. More control effort would be exerted for drivers with poor driving skills, and vice versa. A sliding mode control (SMC)-based differential braking (DB) controller is designed using a three degrees of freedom (DOF) yaw-plane model. An eight DOF nonlinear yaw-roll model is used to simulate the SUV dynamics. Two driver models, namely longitudinal and lateral, are used to ‘drive’ the virtual SUV. By integrating the virtual SUV, the DB controller, and the driver models, the performance of the DAVSC system is investigated. The simulations demonstrate the effectiveness of the DAVSC strategy. 相似文献
20.
Yangyan Gao Timothy Gordon Mathias Lidberg 《Vehicle System Dynamics: International Journal of Vehicle Mechanics and Mobility》2019,57(8):1224-1240
ABSTRACTThis paper considers the problem of collision avoidance for road vehicles, operating at the limits of friction. A two-level modelling and control methodology is proposed, with the upper level using a friction-limited particle model for motion planning, and the lower level using a nonlinear 3DOF model for optimal control allocation. Motion planning adopts a two-phase approach: the first phase is to avoid the obstacle, the second is to recover lane keeping with minimal additional lateral deviation. This methodology differs from the more standard approach of path-planning/path-following, as there is no explicit path reference used; the control reference is a target acceleration vector which simultaneously induces changes in direction and speed. The lower level control distributes vehicle targets to the brake and steer actuators via a new and efficient method, the Modified Hamiltonian Algorithm (MHA). MHA balances CG acceleration targets with yaw moment tracking to preserve lateral stability. A nonlinear 7DOF two-track vehicle model confirms the overall validity of this novel methodology for collision avoidance. 相似文献